Structure and 40Ar/39Ar K-feldspar thermal history of the Gold Butte block: Reevaluation of the tilted crustal section model

Karl E. Karlstrom*
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA

Matt Heizler
New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA

Mark C. Quigley†
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA

ABSTRACT

This paper reevaluates the geometry and processes of extension in the boundary zone between the western Colorado Plateau and the Basin and Range Province. Based on new mapping of extensional detachment faults, restored cross sections, and 40Ar/39Ar K-feldspar thermochronology, we present an alternative to the previously published model that the Gold Butte block is a tilted 15–18-km-thick intact basement crustal section. Mapping of windows of crystalline basement at 1:12,000 scale delineates a bedding-parallel detachment fault system that parallels the Great Unconformity in the Tramp Ridge block, just north of the Gold Butte block. Above this detachment fault, extensional allochthons containing Upper Paleozoic through Tertiary (>18 Ma) rocks exhibit tilting due to westward translation and tilting. We project this geometry above the Gold Butte block itself based on restoration of slip across the Gold Butte fault. This reconstruction suggests that the detachment system extended over lateral distances of >1000 km2, helping define a region of relatively modest extension (~25% for cover; 10% for basement) within the Nevada transition zone between the Colorado Plateau and Basin and Range.

In agreement with previously published mapping and structural cross sections, our restored cross sections suggest that extensional deformation initiated with formation of hanging-wall anticlines above a listric Grand Wash fault system and evolved via a combination of both listric faulting and domino-block translation and tilting. New data presented in this paper document that extension was also facilitated by slip on bedding-subparallel detachment zones in the Bright Angel Shale, along the basement unconformity, and along other zones of weakness, such that the extended

*kek1@unm.edu
†Current address: Department of Geological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
Paleozoic cover was partly decoupled from less-extended basement. This detachment system ramps down into basement to merge with the South Virgin–White Hills detachment at the west end of Gold Butte, the principal extensional detachment of the region. Our mapping and structural model suggest that movement on these detachment faults initiated at low angle. Further, using the geometry from restored cross sections, we infer that the deepest rocks now exposed in the western Gold Butte block resided at depths of ~4 km below the Great Unconformity (~8 km below the surface) rather than the previously published 15 km below the unconformity (~19 km below the surface). New 40Ar/39Ar K-feldspar thermochronology from the Gold Butte block, added to a compilation of published thermochronologic data, is used to help evaluate alternative models. K-feldspar multiple diffusion domain (MDD) modeling suggests that rocks throughout all but the westernmost part the block had cooled through 150–200 °C before the Phanerozoic and resided at temperatures <200 °C prior to onset of rapid Miocene extension at 17 Ma. Pre-extensional (pre–17 Ma) 100 °C and 200 °C isotherms were located near the east and west ends of the basement block, respectively. Muscovite, biotite, and K-feldspar from a 70 Ma Laramide pluton deep in the block give 40Ar/39Ar ages of 70, 50, and 30 Ma, respectively. MDD modeling of K-feldspar from this sample is compatible with cooling the westernmost part of the block from 225 °C to 150 °C between 17 and 10 Ma. Available thermochronology can be explained by either structural model: our model requires pre-extensional geothermal gradients of ~25 °C/km, rather than 15–20 °C/km as previously published.

INTRODUCTION AND GEOLOGIC BACKGROUND

The Gold Butte region of southern Nevada forms part of the transitional boundary zone between the relatively undeformed Colorado Plateau to the east and the highly extended regions of the Great Basin (Fig. 1). This has been a type area for developing and testing models of extensional processes in continental settings. For example, this region was the centerpiece for models of isostatic uplift of footwall blocks during extension (Wernicke and Axen, 1988) and related models for isostatically driven tilting and folding of initially high-angle faults to become low-angle normal faults (Duebendorfer and Sharp, 1998; Brady et al., 2000). This area has also provided an important field laboratory to evaluate the question of whether low-angle faults move at low angle, or are rotated to low angle due to isostatic footwall response (rolling hinge model; Buck, 1988; Wernicke and Axen, 1988) and/or due to progressive domino faulting (Proffett, 1977; Chamberlain, 1983; Axen, 2007). The region has been a test bed for understanding the extent to which thrusts may be reactivated as normal faults (Wernicke et al., 1985; Axen, 1993), and it has spawned diverse models to explain the extensional geometries, for example, N-S shortening synchronous with E-W extension (Anderson and Barnhard, 1993; Anderson et al., 1994) and upper-crustal response to lower-crustal flow (Langenheim et al., 2001).

The central topic of this paper, the Gold Butte block, is one key to resolving these different models. It has been proposed to be a 15–18-km-deep intact crustal section that was initially bounded by steeply dipping normal faults that were tilted to shallow dips due to isostatic uplift resulting from regional detachment faulting (Fig. 2A; Wernicke and Axen, 1988; Fryxell et al., 1992; Reiners et al., 2000; expanded upon herein). This and adjacent parts of the North and South Virgin Mountains of Nevada (Fig. 1) are segmented into basement-cored crustal blocks by low-angle normal faults and contemporaneous high-angle strike-slip faults (Beard, 1996). The Precambrian-cored blocks have strikingly different geometries. The Gold Butte block exposes a 20-km-wide exposure of Proterozoic basement west of and beneath ~50°E-tilted Paleozoic strata. The dipping strata correlate with nearby flatlying Grand Canyon successions, and simple restoration of their steep dip has led to the tipped crustal section model (Fig. 2B; Fryxell et al., 1992). On the west edge of the Gold Butte block, and extending to the south and north, there is a low-angle extensional detachment fault system called the South Virgin–White Hills detachment fault (Fig. 1; Duebendorfer and Sharp, 1998), which dies out southward against the Black Mountain accommodation zone (Faulds and Varga, 1998) and correlates northward with the Beaverdam and Snake Range detachments. The trace of this detachment system is just east of the trace of frontal thrusts of the Sevier thrust system (Fig. 1).

North of the Gold Butte basement block, across the Gold Butte strike-slip fault (Fig. 1), the Tramp Ridge and the Lime Ridge blocks are characterized by small basement windows exposed beneath generally E-titled Paleozoic rocks. Farther north, the Virgin Mountain anticline (VMA of Fig. 1) is a large NE-trending basement-cored uplift (Quigley, 2002; Quigley et al., this volume), and the Beaverdam Mountains expose a small basement block beneath the Beaverdam detachment zone (Fig. 1). The Gold Butte block has been interpreted to have been uplifted via isostatic uplift of the footwall of the South Virgin–White Hills detachment fault accompanying extensional breakaway of Basin and Range blocks from the Colorado Plateau.

The Gold Butte block has been interpreted to have been uplifted via isostatic uplift of the footwall of the South Virgin–White Hills detachment fault accompanying extensional breakaway of Basin and Range blocks from the Colorado Plateau.
across the Grand Wash fault system (Fig. 2A; Wernicke and Axen, 1988). This model interprets the basement block to expose a 15–18-km-deep crustal depth section that initiated along a subplanar 60°W-dipping normal fault, followed by tilting of the fault and its footwall to the surface due to isostatic effects accompanying progressive extension (Figs. 2A, 2B, and model 1 of Fig. 2C). This model has been supported by structural mapping, thermo barometry in basement rocks, and megacryst distributions in Mesoproterozoic granites (Fryxell et al., 1992). More recent mapping of the extensional fault systems of the block has shown a more complex model for the extension (Brady et al., 2000), but the conceptual crustal section model still dominates the literature (e.g., Fitzgerald et al., 2009, p. 28). In this paper, we build on the excellent maps and cross sections of Brady et al. (2000) and expand upon the synchronous slip model involving slip on listric and planar faults by adding evidence for slip on initially subhorizontal detachment faults.

The concept of an intact crustal section extending to middle-crustal paleodepths has led to intensive study of the Gold Butte block using a variety of thermochronometers. These include: (1) fission-track studies on apatite (Fitzgerald et al., 1991, 2009) and zircon (Bernet et al., 2002), (2) (U-Th)/He thermochronology on apatite and titanite (Reiners et al., 2000), and (3) Ar K-feldspar studies (this paper). All data suggest that the Precambrian rocks just under the E-tilted Tapeats Sandstone unconformity at the east end of the block, like rocks in the adjacent Grand Canyon (Kelley et al., 2001; Flowers et al., 2008), record pre-Miocene (pre-extensional) cooling through 70–110 °C. In contrast, rocks at the western end of the block were hotter in the Miocene and give ages consistent with cooling through various closure temperatures (for apatite fission track [AFT], U-Th/He, and Ar) during Miocene extension. The collective data indicate that Miocene extension took place mainly between 17 and 14 Ma (Fitzgerald et al., 1991, 2009; Reiners et al., 2000; Quigley et al.,

Figure 1. Location map of the Gold Butte block and North Virgin Mountains (adapted from Beard, 1996) showing fault blocks cored by Precambrian basement (black). Inset shows location of Gold Butte and Lower Granite Gorge (LGG) in the context of the transitional boundary zone between the Colorado Plateau and Basin and Range Province. Locations of Figures 3, 4, and 5 are also shown. VMA—Virgin Mountain anticline.
Figure 2. Alternate structural models for the restored geometry of the Gold Butte block. (A) Model 1 from Wernicke and Axen (1988) and (B) model 1 from Fryxell et al. (1992). SL—sea level; SST—sandstone. (C) Alternative models: model 1 (as in A and B) interprets the present surface to be a tilted crustal cross section, the west end of which was exhumed from a depth of ~18 km. Model 2 (this paper) interprets the west end of the present surface to have been exhumed from a depth of ~8 km.
this volume), and the combined data allow well-constrained placement of pre-extensional (pre–17 Ma) 100 °C and 200 °C isotherms (see following discussion).

This paper presents new 40Ar/39Ar thermochronologic studies of basement rocks in the proposed crustal section at Gold Butte to add to published thermochronologic data. The cooling history of the block is becoming exceptionally well known, but resolving uncertainty about the depth from which exposed crustal rocks were exhumed requires: (1) understanding the geometry and kinematic history of extension (e.g., in restored cross sections), and (2) inferring the geothermal gradient for the pre-extensional and extensional tectonic regimes, which are the subjects of this paper. Published estimates for the geothermal gradient in the region range from ~15 °C/km (Fryxell et al., 1992), to 20 °C (Reiners et al., 2000; Fitzgerald et al., 2009) to 25 °C/km (this paper).

Large-magnitude extension was mostly over in this area by ca. 14 Ma (Beard, 1996; Brady et al., 2000). However, continued 100-m-scale slip on the Wheeler and other normal faults is now well documented by offset of the 6 Ma Hualapai Limestone and accompanying formation of a hanging-wall anticline in this unit and in slightly younger (4.7 Ma) basals at the mouth of Grand Wash (Howard and Bohannan, 2001; Karlstrom et al., 2008). The locus of post–6 Ma extension in the broad transitional domain between the Colorado Plateau and Basin and Range has migrated eastward into the Colorado Plateau to the currently active Hurricane and Toroweap faults (Brumbaugh, 1987; Jackson, 1990; Karlstrom et al. 2007, 2008). The slip history on the combined Wheeler-Hurricane-Toroweap faults over the last 6 m.y. has involved formation of a hanging-wall anticline above listric faults, as well as uplift of the Colorado Plateau relative to the Basin and Range by 750–900 m (Karlstrom et al., 2007, 2008). These new data supporting active listric faulting and the process of formation of hanging-wall anticlines are incorporated into our model for the geometry and history of Miocene faulting across the Gold Butte block.

EVIDENCE FOR BEDDING-SUBPARALLEL MIOCENE EXTENSIONAL DETACHMENT FAULTS

Detailed mapping (scale 1:12,000) of the Tramp Ridge area in 1998–1999 by the combined Massachusetts Institute of Technology (MIT) and University of New Mexico (UNM) advanced field camps is shown in Figure 3A and superimposed on thermal infrared multispectral scanner (TIMS) images in Figure 3B. TIMS images were processed following methods outlined in Hook et al. (2005). Because of the sensitivity of the thermal infrared part of the spectrum to silicate mineralogy, these images do an excellent job of distinguishing silicate compositions in basement and cover sequences. Companion AVERIS (Airborne Visible/Infrared Imaging Spectrometer) images were used to distinguish limestones from dolomites and further help delineate units. These images, confirmed by detailed mapping, reveal a persistent association of small outcrops of the Tapeats Sandstone (brightest spectral response due to high-SiO2 content and red color in Fig. 3B) adjacent to Proterozoic basement over a wide region in Precambrian-cored domes (West Dome and Pig’s Ear of Fig. 3A) in the Tramp Ridge block.

The basement windows of the Tramp Ridge block are a series of doubly plunging anticlines that are rimmed semi-continuously by fragments of Lower Paleozoic strata (Figs. 3A and 3B), which are variably attenuated, but in correct stratigraphic order, and are locally in depositional contact with basement. In the thickest sections (Fig. 3A), the Tapeats Sandstone–Bright Angel Shale section is close to its depositional thickness, but in most areas, the section is thinned. In many segments of the contact, the Tapeats Sandstone is missing entirely, and the Bright Angel or Muav Formations rest on basement. Basement rocks near the contact are locally deeply weathered, similar to outcrops of the Great Unconformity in the Colorado Plateau, and are locally cataclastic (e.g., Lime Wash of Fig. 3). Tapeats Sandstone outcrops occur on both east and west sides of the antiformal windows (Fig. 3). Thus, our mapping suggests that the basement domes are mini–core complexes or domelike features and are not fundamentally defined by N-S fault zones bounding their west sides.

These relationships indicate that a complex low-angle fault zone anastomoses along the Great Unconformity and adjacent bedding planes, mainly following the weak Bright Angel Shale. Because Lower Paleozoic strata are parautochthonous relative to basement, and the Lower Paleozoic strata have low to moderate dips all around the domal outcrops, we infer that the basement sections themselves are not strongly tilted. In contrast, carbonate units above the Bright Angel Shale are commonly in fault contact with younger units and are dominantly E-tilted, nose-down, against the footwall rocks. Thus, overlying carbonate units are tilted and have been translated westward relative to basement rocks along a detachment fault system that generally follows the Great Unconformity and that is broadly folded above the basement windows.

An outcrop-scale analog for this geometry (Figs. 4A and 4B) shows tilted and extended domino blocks of Tapeats Sandstone riding on a detachment fault that is subparallel to the Great Unconformity in the North Virgin Mountains (Quigley et al., this volume). Although this outcrop example is north of the Gold Butte area, and opposite in slip direction, it displays features illustrative of the bedding-parallel detachment faults in both areas. Semi-regularly spaced domino blocks of Tapeats Sandstone have been tilted by movement along this low-angle fault (Fig. 4B). Small basement domes form in response to space problems caused by domino-block rotation (Figs. 4B and 4C), perhaps analogous to the larger domes seen in the Gold Butte block.

The detachment fault in the Virgin Mountains is made up of several components. Below the domino blocks, there is a zone (~1 m thick; Figs. 4B, 4C, and 4D) of white cataclastic breccia made up of blocks and grains of Tapeats Sandstone. Below this, the detachment itself is defined by a several-centimeter-thick zone of red silty cataclasite (Figs. 4D–4F) that appears to
Figure 3 (on this and following page). (A) Simplified geologic map of the Tramp Ridge block showing basement-cored domes rimmed by a detachment fault system; generalized from 1:12,000 mapping from the Massachusetts Institute of Technology–University of New Mexico (MIT-UNM) field camps with depiction of small-offset normal faults in the Paleozoic rocks simplified from new mapping, Brady et al. (2000), and Beard et al. (2007).
Figure 3 (continued). (B) Thermal infrared multispectral scanner (TIMS) image of the Pigs Ear basement-cored dome with detachment fault system extrapolated north of the map area of A based on only local preservation of Tapeats Sandstone at the basement-cover contact, as well as the presence of attenuated Tapeats Sandstone slivers on both east and west margins of the dome.
be derived from fine-grained layers in the Tapeats Sandstone. Basement rocks below the detachment are characterized by a several-meter-wide zone of cataclasite, with discrete planar ultra-cataclasites marking faults (Fig. 4E), fractured and boudinaged pegmatites (Figs. 4B and 4C), and brittle/ductile features such as S-C fabrics in anastomosing cataclastic foliation (Figs. 4E and 4F). In the nooks between domino blocks, basement fabric can be domed, and straight short-cut faults formed during the progressive deformation (Fig. 4C).

In the Gold Butte area (Figs. 3 and 5), and at a range of scales, Paleozoic through Tertiary strata in the hanging wall of the domal detachment faults in the Tramp Ridge block are also interpreted as extensional allochthons, with beds commonly dipping 40°–60°E, against the detachment. In the Tramp Ridge cross section of Brady et al. (2000; A–A’ of Fig. 6C), hanging-wall blocks are internally deformed but essentially represent several large E-tilted dominos that were translated westward several kilometers on the basal detachment (Fig. 6). Normal faults in the dominos are higher angle (30°–60°) and merge downwards with and locally crosscut the detachment. At the west edge of the anticlines, the areas where the domino faults merge with the detachment (Figs. 3 and 6), interaction of the domino faults and detachment produce complex “chaos” structures up to hundreds of meters thick. Basement anticlines (labeled 1–7 in Fig. 6) have a fairly regular geometry and spacing, due to tilting of the domino blocks. East limbs of the domal anticlines, although brecciated
and attenuated, are generally less complex and have less attenuation of Lower Paleozoic strata in the area of Figure 3. However, mapping indicates that the basement-cover contact shows attenuation of Lower Paleozoic units and the presence of a regional low-angle detachment, even at the east end of the Gold Butte block, in the Indian Hills (Fig. 7B), and the Azure Ridge blocks (see Fig. 5 for locations).

Restoration of the cross section (Figs. 6A and 6B) suggests that ~25% (<10 km) of E-W extension of Upper Paleozoic rocks (Y to Y’) is accommodated by a combination of mechanisms, including tilting and internal faulting in dominos (in agreement with Brady et al., 2000). However, because of slip on the unconformity and hanging-wall flexure, we infer that the percent of extension of the basement in this cross section (Z to Z’) is only ~10% (Fig. 6) and is accomplished mainly on the deeply penetrating master listric faults. In contrast, cross sections by Brady et al. (2000) showed a similar magnitude of extension for both basement and cover.

RELATIVE IMPORTANCE OF LISTRIC VERSUS PLANAR FAULTS

Model 1 of Figure 2 involves a set of subplanar, 60°-dipping, deeply penetrating normal faults that get tilted by isostatic doming and progressive extension. This model assumes that the deformation can be restored by a simple untilting of the ~50°E-dipping Paleozoic strata to horizontal. However, this structural model would need to be modified if the cover were detached from the basement and/or if some portion of the tilt of the Paleozoic strata were due to hanging-wall flexure (Fig. 7A).

Curved contacts for Paleozoic strata observed in the Wheeler Ridge and Azure Ridge blocks support the interpretation that listric master faults may bound parts of the extensional allochthons (Figs. 7A and 7B; in agreement with Brady et al., 2000). Hanging-wall flexure is also observed for deformation of the Hualapai Limestone and 4.7 Ma basalts in the hanging wall of the Wheeler fault, with offset of ~450 m, flexure wavelength...
of ~7 km, and hanging-wall dips of ~15° formed in the last 6 m.y. of moderate extension (Howard and Bohannan, 2001). Similarly, differential incision rate data from the Grand Canyon show that extension across the neotectonic Toroweap and Hurricane faults in the last 600 k.y. involved ongoing formation of a hanging-wall flexure above listric faults (Karlstrom et al., 2007, 2008). Thus, using time-for-space comparisons, Figure 6 incorporates listric faults for the main block-bounding structures and envisions that an important component of the dip of Paleozoic strata is due to hanging-wall flexure. If this is correct, most of the basement of the Gold Butte block should be less-rotated than the 50° dip of the Paleozoic rocks in the Azure Ridge block, compatible with the evidence for slip of cover allochthons above less-extended basement.

GOLD BUTTE STRIKE-SLIP FAULT

The Gold Butte fault is one of a family of NE-striking strike-slip faults related to the sinistral Lake Mead fault zone (Fig. 1; Bohannan, 1979). The kinematic significance of this fault has been controversial, and there is disagreement regarding the sense and magnitude of strike slip and the relative importance and relative timing of normal and strike-slip faulting (Beard, 1996). Our mapping supports the interpretation that the Gold Butte fault moved simultaneously with the major domino-bounding normal faults (Beard, 1996) and is a transfer fault (transtensional lateral ramp) related to the South Virgin–White Hills detachment, with substantial slip at its west end and diminishing slip toward its east end.

Hence, we infer that styles of extension may be similar across it. This is reinforced by the scoop-shaped bend in the strike-slip fault into the “Rainbow Ridge” fault, which bounds the eastern of the two domino blocks (Fig. 5).

In this region, Figure 5 shows a modification to the Beard et al. (2007) compilation. Proterozoic basement rocks with undisturbed foliation trends are exposed across the northeastern end of the Gold Butte fault, suggesting that the main slip has been transferred to the Rainbow Ridge extensional fault at this point. Synorogenic conglomerates and megabreccias of the synextensional Thumb Member (16–14 Ma) here unconformably overlie basement rocks and are themselves weakly E-titled, indicating that the combined extensional–strike-slip system denuded a portion of basement during deposition of the Thumb Member. The abundance of Precambrian clasts in the mixed-clast conglomerate and an unroofing sequence in the Gold Butte conglomerate suggest that Paleozoic rocks, then crystalline basement of the Gold Butte block, were being erosionally denuded during left-lateral and north-side-down movement on the Gold Butte fault ca. 17–15 Ma, before much of the E-tilting occurred in the Tramp Ridge area. Mullions and sickenlines on the Gold Butte fault rake 10°SE on the steeply NW-dipping fault planes, compatible with a sinistral oblique slip (minor south-side-up component). This left-lateral interpretation is in agreement with Longwell et al. (1965), Bohannon (1984), Beard (1996), and Brady et al. (2000). Southside-up components of slip are also indicated by an overturned syncline of Tertiary strata north of the fault. An alternate interpretation (Fryxell et al., 1992), that the fault is a right-lateral tear in the hanging wall of the South Virgin–White Hills detachment, is not supported by our mapping, which indicates that the apparent dextral bend of the Rainbow Garden Member of the Horse Springs Formation is not a drag feature, but instead is related to the scoop-shaped links between extensional and strike-slip faults.

Thus, we interpret the Gold Butte block to have a similar structure as the Tramp Ridge block and hence to also contain relatively untilted basement. To reconstruct regional cross sections, we infer that the Gold Butte block is a more deeply eroded analog of the Tramp Ridge block, where a basement-cover detachment fault has been eroded through to expose the present level of the Gold Butte block. Paleozoic strata preserved at the east end of the Gold Butte block (Azure Ridge) are interpreted to be part of a hanging-wall anticline (Fig. 6B), such that dips may have decreased westward (Brady et al., 2000) rather than continuing at this same dip for many kilometers (cf. Fryxell et al., 1992; Reiners et al., 2000). In support of this idea, the Lower Paleozoic rocks in the Azure Ridge and Indian Hills blocks, in the eastern Gold Butte block (Fig. 5), are similar to E-dipping limbs of the anticlinal windows in the Tramp Ridge block in showing attenuation of strata and presence of a detachment at several stratigraphic levels, from the Bright Angel Shale to the Great Unconformity. The tilted crustal section model (model 1 of Fig. 2) implies a different style of extension for the Tramp Ridge block relative to the adjacent Gold Butte block, which seems difficult to justify over such short length scales. Hence, in our interpretation, the Gold Butte basement block (cross sections B and C of Fig. 5) is restored below the Tramp Ridge cross section (cross section A of Figs. 5 and 6) to present a composite cross section (Fig. 6C).

In the restored section (Fig. 6A), the Gold Butte block may have been overlain by a slightly thinner section of Paleozoic rocks than the areas farther north prior to extension. This is suggested by paleogeographic reconstructions of the N-tilted and Paleozoic sedimentary succession that become erosionally beveled to lower stratigraphic levels southward due to uplift of the Laramide-aged Kingman highlands (Beard, 1996). In support of this model, preextensional rocks of the Rainbow Gardens Member of the Horse Springs Formation rest atop Permian Kaibab in the Azure Ridge block, whereas Triassic rocks are preserved under the Rainbow Gardens Member in the Tramp Ridge and Lime Ridge blocks (Fig. 6A). Figure 6A also suggests that some of the master extensional faults (Wheeler, Grand Wash, and Hurricane faults) may have reactivated Laramide reverse faults.
Figure 6. (A) Pre-extension (ca. 20 Ma) stratigraphy showing west-thickening Paleozoic rocks (P), fault-controlled thickness variation in Mesozoic rocks (M), hypothetical Laramide reverse faults and monoclins, thin pre-extensional 26–18 Ma Rainbow Garden Member (T), and estimated positions of 100 °C and 200 °C isotherms relative to surface that now forms the Gold Butte block. Major fault names and names of prominent ridges of tilted strata (from Fig. 5) are shown. (B) Early stages of extension (~10%) take place via slip on master listric faults, formation of hanging-wall antilines, and domino block rotation facilitated by slip on weak bedding planes (e.g., Great Unconformity); basement culminations 1–7 are labeled (locations also shown in Fig. 5). (C) Present-day cross section constructed by stacking three cross sections (A, B, C; locations shown in Fig. 5; modified from Brady et al., 2000; Fryxell et al., 1992) and interpreting these as progressively deeper erosional cuts into the Gold Butte block. Thermo-chronology controls data points as in Figure 5 and isotherms as described in the text. Laramide pluton is shown at the surface near the west end of the Gold Butte block.

EVIDENCE FROM PROTEROZOIC ROCKS

Fryxell et al. (1992) presented several lines of evidence in support of the hypothesis that the Gold Butte Proterozoic rocks represent a single tilted crustal section that extends from the Great Unconformity (beneath Azure Ridge on the east) to paleodepths of ~13–15 km below the unconformity. A brittle-ductile shear zone and associated chlorite breccia (Lakeside Mine of Fryxell et al., 1992; South Virgin–White Hills detachment of Duebendorfer and Sharp, 1998) form the west edge of the Gold Butte block. To help with the following discussion, Figures 2B and 5 (cross section C–C’) show a scale bar for model 1: pre-Miocene paleodepth is labeled on cross section C according to the tilted crustal section model (model 1 of Fig. 2).

One line of evidence for the tilted crustal section model was thermobarometry of Proterozoic rocks. Fryxell et al. (1992) reported that Proterozoic rocks directly beneath the unconformity gave pressures of ~300 MPa, whereas those ~10 km deeper gave pressures of 600 MPa. This was interpreted as a frozen-in Proterozoic depth gradient that had been up-ended in the Tertiary. However, this interpretation was based on just three of four samples analyzed. One problem with the interpretation of these data is the absence of pressure-temperature (P-T) path information in rocks that we know to have complex Proterozoic P-T history. Thermobarometry studies in the adjacent Grand Canyon basement show evidence for decompression from 600 to 300 MPa during the 1.7–1.67 Ga orogenic event (Williams and Karlstrom, 1997; Karlstrom et al., 2003; Dumond et al., 2007).

Similar results were reported by Duebendorfer et al. (2001) from basement rocks of the nearby Cerbat Mountains (Fig. 1). Similarly, the depth significance of the apparent trend of increasing temperature toward the west (Fryxell et al., 1992, Fig. 8C) is called into question by observed large lateral temperature gradients in basement of the Colorado Plateau, which are interpreted to be due to pluton-enhanced metamorphism at constant pressure (Ilg et al., 1996; Williams and Karlstrom, 1997; Dumond et al., 2007). Without more comprehensive metamorphic analysis involving relative thermobarometry from similar rock types, compositional maps of metamorphic minerals, and P-T path information (Dumond et al., 2007), it is unclear if the data presented by Fryxell et al. (1992) represent different parts of such a decompression P-T path versus different locations within a depth section. If all four of their samples are considered, the disagreement in estimated pressures between two samples from similar distance below the unconformity (400 versus 600 MPa) is difficult to explain using the uniformly tilted crustal section model but would be compatible in terms of preservation of two different parts of the Proterozoic P-T path.

The application of Al-in-hornblende barometry to the 1.4 Ga plutonic rocks shows ~9 MPa/km westward pressure increase (~5 km depth increase over 20 km) rather than the 27 MPa/km (~1 km) postulated in model 1 (Brady, 2005). This may reflect late Precambrian tilting following intrusion of the Mesoproterozoic granites and prior to Phanerozoic deposition (as interpreted by Brady, 2005), but this is counter to regional models for isobaric crustal sections preserved in the Grand Canyon region by 1680 Ma (Karlstrom et al., 2003; Dumond et al., 2007; Williams et al., 2009). Alternatively, these data seem in closer agreement with our suggested paleodepth for the western edge of the block as ~4–5 km below the Paleozoic unconformity. At present, the combined thermobarometry data are ambiguous and do not strongly support one model over the other.

The Gold Butte block contains the Gold Butte granite, a 1.45 Ga pluton (Silver et al., 1977) that is similar in composition and texture to the ca. 1.4 Ga A-type plutons that permeate many regions of the American Southwest. Fryxell et al. (1992) mapped variations in size and density of K-feldspar megacrysts as a possible proxy for depth and reported that phenocryst abundance increases toward the Paleozoic unconformity. They concluded that phenocrysts floated upward within a 10–12-km-thick, now-tilted, magma chamber. However, the physical basis for this inferred phenocryst zonation is questionable; it is not clear if K-feldspar megacrysts are denser or less dense than surrounding magma. Also, intrusion of most of the 1.4 Ga plutons in the region involved sheet-like geometry, multiple intrusions, complex emplacement processes, and synorogenic character (Kirby et al., 1995; Duebendorfer and Christensen, 1995; Nyman and Karlstrom, 1997), so we question the use of megacryst patterns as a reliable proxy for depth in the pluton.

40Ar/39Ar Age Spectrum Results

As summarized already, several thermochronology methods have been applied to the Gold Butte tilted section. Previously published 40Ar/39Ar data focus on muscovite, for which Reiners et al. (2000) demonstrated an age decrease from 1374 to 90 Ma from east to west across the block. For context, geologic data indicate that rocks near the unconformity cooled to surface temperature (~10 °C) before the deposition of the Cambrian sedimentary section (before ca. 530 Ma). Rocks farther west (deeper)
in the block, which are hypothesized to have resided at depths of 15–18 km in the crust, should have cooled slowly as they were erosionally unroofed between 1.45 Ga and Cambrian time. Phanerozoic deposition of 3–4 km of sediments should then have elevated temperatures by ∼100 °C before rapid Miocene cooling due to extensional unroofing.

Our new 40Ar/39Ar data concentrate on the utility of K-feldspar thermochronology; however, hornblende, muscovite, and biotite were also analyzed. Figure 8 displays the new data as age spectra, and sample locations are shown in Figure 5. The argon isotope data are tabulated in Appendix 1,1 where full analytical details are also provided. Appendix 1 also presents the multiple diffusion domain (cf. Lovera et al., 1989) thermal modeling results for KGB99-1, 16, 27, and 32a but not for KGB99-34 due to the age spectrum complexity (Fig. 8E). Two hornblende results yielded ages of 1613 ± 2 Ma and 1369 ± 6 Ma for KGB99-16 and KGB99-34, respectively (Figs. 8B and 8E). KGB99-16 is a Paleoproterozoic granite based on the hornblende result. It is noted that the hornblende specimen from a Laramide pluton (65.2 ± 0.6 Ma; Brady et al., 2000) located near the west end of the Gold Butte block (Fig. 5) were dated. The muscovite, biotite, and K-feldspar spectra are moderately complex: the muscovite gives an age of 67.8 ± 0.3 Ma for KGB99-27 shows a significant part of its spectrum with Phanerozoic ages (Fig. 8D). This sample has minimum ages of ca. 30 Ma that climb steadily to ca. 900 Ma. KGB99-34 K-feldspar has an erratic age spectrum (Fig. 8E) that perhaps indicates excess 40Ar contamination and is not discussed further because it does not provide unambiguous thermochronologic data.

Three minerals from a single sample (KGB99-32a) collected from a Laramide pluton (65.2 ± 0.6 Ma; Brady et al., 2000) located near the west end of the Gold Butte block (Fig. 5) were dated. The muscovite, biotite, and K-feldspar spectra are moderately complex: the muscovite gives an age of 67.8 ± 0.3 Ma for the flattest part of the spectrum (Fig. 8F). All of the steps from the noisy biotite spectrum have a calculated weighted mean age of 48.1 ± 0.5 Ma. The K-feldspar spectrum is characterized by several steps (B–Q; first ∼10% of 39Ar released) with ages between ca. 10 and 18 Ma that yield a mean ± standard deviation (1σ) of 13 ± 3 Ma. Following these initial steps, the spectrum rises abruptly to a slightly complicated ca. 30 Ma part of the spectrum that constitutes the final ∼75% of gas release.

PROTEROZOIC COOLING HISTORIES FROM 40Ar/39Ar ANALYSES

Figure 5 summarizes the new 40Ar/39Ar dates (squares) in the context of all available thermochronologic data. Ar dates on multiple minerals demonstrate a general age decrease from east to west. We interpret the general age trend to record the passage of the minerals through their nominal closure temperatures (McDougall and Harrison, 1999) of 500 °C for hornblende, 350 °C for muscovite, and 300 °C for biotite. The K-feldspar data will be presented in terms MDD thermochronology, but in general, the youngest apparent ages, represented by initial ages on
the spectrum, correspond to a closure temperatures of ~175 °C, whereas the older ages from high-temperature steps correspond to cooling below ~250 °C (Appendices 1 and 2 [see footnote 1]).

For most of the block, the combined muscovite and biotite ages from Precambrian rocks get younger from east (1385 Ma muscovite and 1390 Ma biotite) to west (995 Ma muscovite and 1200 Ma biotite), suggesting hotter and deeper crust (in the Proterozoic) exposed in the western part of the block. Most of the mica data indicate cooling through 300–350 °C before ca. 1000 Ma at all exposed paleodepths, but they do not further shed light on the thermal condition of the crust immediately prior to the Miocene. Younger muscovite ages of 70–90 Ma near the South Virgin–White Hills detachment may suggest Laramide cooling through 350 °C (discussed later herein), but they likely are from a structural block with a different cooling history than the rest of the Gold Butte block, as was also suggested by Fitzgerald et al. (1991).

K-feldspar, because of its multiple diffusion domain (MDD) character, can provide a segment of the temperature history between ~250 and 175 °C for different domains (Lovera et al., 1989). Sample KGB99-1 (Fig. 8A), taken from just beneath the Tapeats Sandstone, has a K-feldspar with an age gradient from ca. 650 to 1300 Ma and is used to estimate the Precambrian thermal history of the highest structural levels (Fig. 9).
Figure 9. Age spectra (A), kinetic data (B, C) and multiple diffusion domain (MDD) thermal histories (D) for KGB99-1 and KGB99-27 K-feldspar. The Precambrian thermal history for KGB99-1 is calculated by standard MDD analysis, assuming cooling only from an originally high temperature. MDD modeling for KGB99-27 is less straightforward due to reheating and argon loss in the Phanerozoic. Because both samples record 900 Ma ages, MDD modeling can estimate their temperatures at this time (points A and B) in graph D. Using the information that the samples differed by 70 °C at this time, and assuming the samples remained at a constant temperature set, the 70 °C is added to the thermal history of KGB99-1 and used to calculate a model spectrum for KGB99-27 that is shown by the green thermal history and green modeled age spectrum. Prior to Tapeats Sandstone deposition, KGB99-1 was at the surface (point C) and KGB9927 remained 70 °C hotter (point D). KGB99-27 has experienced post-Cambrian argon loss, and the modeled temperature increase to 220 °C between points D and E causes this argon loss, which is represented by the modeled (red) and measured (black) age spectrum gradient (20–600 Ma) over the first ~30% of 39Ar released.

Point E equals the maximum pre-Miocene extension temperature, which then decreases below ~100 °C by 17 Ma to be consistent with published apatite fission-track (AFT) data. The thermal history between points C and F represents the equal heating history for KGB99-1 that is implied extension. This heating to 140 °C does not cause argon loss from KGB99-1 and is thus consistent with the measured spectrum, which does not reveal ages less than ca. 600 Ma.

The age spectrum can be fit with thermal histories that allow cooling only or a reheating history (Appendix 1); however, here we consider the cooling-only models and use the combined methods of Lovera et al. (1989), Quidelleur et al. (1997), Sanders and Heizler (2005), and Sanders et al. (2006) to model the sample. A model age spectrum that closely matches the measured spectrum (Fig. 9A, yellow) is given by a thermal history that suggests two periods of cooling (1300–1150 and 750–600 Ma) with an isothermal (~180 °C) segment from 1150 to 750 Ma (Fig. 9D, yellow-blue). The youngest ages of ca. 600 Ma in the age spectrum (blue, Fig. 9A) indicate that the sample cooled below at least 150 °C by this time and is consistent with the sample position below the Tapeats Sandstone. Importantly, the sample did not experience Phanerozoic 40Ar* loss and therefore has not been heated for significant time above 150 °C since 600 Ma.

K-feldspar KGB99-27, from the Gold Butte granite near the west end of the block (Fig. 5), yields an age spectrum that is compatible with significantly higher temperatures relative to KGB99-1 (Fig. 9A, black). This sample reveals substantial Phanerozoic argon loss and is overall much younger than KGB99-1 and is therefore a sensitive measure of the maximum temperature attained due to burial in the Phanerozoic. MDD modeling of KGB99-27 (Appendix 1; Fig. DR3D) shows that the measured spectrum can be matched with a thermal history passing through ~250 °C at 900 Ma with continued cooling to 200 °C by 600 Ma. Essentially isothermal conditions at 200 °C during the Phanerozoic generate the age gradient observed during the initial 30% of 39Ar release. The sample cools from ~200 °C to below 150 °C between 30 and 15 Ma. Alternate thermal models, which allow reheating (black lines in Fig. DR3D of Appendix 1), also confirm two major conclusions: that this sample was at ~250 °C at 900 Ma and that KGB99-27 attained a maximum Phanerozoic temperature of ~200 °C prior to Miocene extension.

As is generally the case, MDD models can provide a wide range of acceptable thermal histories; however, we can be much more specific about reasonable time-temperature paths when we consider the geological information, relative crustal position between different samples, and other thermochronological constraints. A combination of the MDD information from KGB99-1 and KGB99-27 allows a composite thermal history from ca. 1300 to...
20 Ma to be constructed (Fig. 9D). Considering the cooling-only MDD models, sample KGB99-1 was ~70 °C cooler at 900 Ma (point A of Fig. 9D) than KGB-99-27 (point B of Fig. 9D). The accuracy of this temperature offset is mainly a function of the diffusion domain activation energy used in the modeling and has an uncertainty of ~25 °C (cf. Lovera et al., 2002). Assuming an intact Gold Butte block, we assume that the thermal histories of these two samples had the same shape, and hence we increase by 70 °C the KGB99-1 temperature model (green line in Fig. 9D). We note that KGB-99-1 had cooled to the surface (10 °C) by Cambrian time (point C of Fig. 9D), and the deeper sample KGB-99-27 is modeled to have been ~70 °C hotter (point D of Fig. 9D). Imposing this parallel temperature path onto the kinetic parameters of KGB99-27 yields the green model spectrum presented in Figure 9A, which would be the present-day measured spectrum for KGB99-27 had it not been heated during Phanerozoic burial. Note that sample KGB99-16 K-feldspar (Fig. 8B; Appendix 1, see footnote 1) is also consistent with cooling below 150–200 °C in the Proterozoic, and these data are similar to the Grand Canyon (Timmons et al., 2005) and the Virgin Mountains (Quigley et al., this volume), where K-feldspar give 40Ar/39Ar ages of 1.4–1.1 Ga. Thermal modeling from these data suggest that basement rocks across this part of the Colorado Plateau–Basin and Range transition cooled through 200 °C in the Mesoproterozoic and have remained cool and in the upper crust since then. This is in contrast with the Arizona transition zone to the south, where Foster et al. (1993) showed 70 Ma K-feldspar ages for Precambrian rocks as the result of Laramide reheating and/or more extensive exhumation of basement rocks (Young, 2001).

Beginning in Tapeats time, both KGB99-1 and KGB99-27 were reheated during deposition and burial by ~3–4 km of Phanerozoic sedimentary rocks. Assuming a range of geo-thermal gradients from 20 to 30 °C/km, this would result in heating of both samples by ~80–120 °C (red and yellow lines of Fig. 9D). This Phanerozoic burial history is simulated by a linear increase in temperature beginning at 550 Ma where KGB99-27 reaches ~210 °C (point E of Fig. 9D) and KGB99-1 reaches ~140 °C (point F of Fig. 9D) by 20 Ma. This model heating (Fig. 9D, yellow) does not cause argon loss from KGB99-1 and thus is consistent with the measured spectrum that yields only Precambrian apparent ages. This thermal history is also compatible with the apatite fission-track (AFT) data, which indicate Miocene temperatures less than 110 °C for samples located near the Great Unconformity (Fig. 5). The composite thermal history for KGB99-27 (Fig. 9D, red) yields the red model spectrum (Fig. 9A) that matches well the measured spectrum for KGB99—27. This thermal history is an oversimplification of the burial history, but from a modeling standpoint, the most important constraints are the timing and maximum temperature achieved prior to 20 Ma (point E of Fig. 9D).

These data and models indicate that the pre-Miocene 200 °C isotherm was near the west end of the Gold Butte block, as shown in Figure 5. Based on samples KGB99-27 and -34, this is the shallowest permissible 200 °C isotherm position for Phanerozoic (pre-Miocene extension) conditions; rocks east of this line could not have been hotter than ~200 °C after ca. 600 Ma for substantial lengths of time without resetting the K-feldspar system. Note that (U-Th)/He dates of 25 Ma from zircon (closure temperature of ~200–230 °C; Reiners et al., 2002), and 19 Ma from titanite (closure temperature of ~200 °C; Reiners et al., 2000) are also generally compatible with this proposed location of the 200 °C isotherm at ca. 20 Ma. In contrast, Reiners et al. (2002) interpreted this isotherm to be ~5 km farther east based on (U-Th)/He zircon data (discussed in the following), which we feel is inconsistent with the K-feldspar data.

POST-LARAMIDE THERMAL HISTORY FROM 40Ar/39Ar K-FELDSPAR DATA

Additional estimates of the post-Laramide but pre-Miocene temperature history at the west (deepest) end of the Gold Butte block come from the 40Ar/39Ar results of sample KGB99-32a (Fig. 8F). Because the Ar muscovite age is concordant with the published U/Pb monazite age, we can conclude that the pluton was emplaced into crust that was below the muscovite closure temperature (~350 °C). The biotite age of ca. 48 Ma is problematic for several reasons. Typically, this biotite age would be suggestive of cooling through ~300 °C at ca. 48 Ma, and since the thermal effects related to pluton emplacement would have long before relaxed, it would also suggest that the rocks at a similar crustal position would have been at or above 300 °C between 65 and 50 Ma. However, the biotite and K-feldspar from KGB99-27 that is in a similar (~1–2 km higher) structural position compared to KGB99-32a are not compatible with temperatures above 300 °C between 65 and 50 Ma. This temperature history would not allow Precambrian ages to be recorded by KGB99-27 biotite or K-feldspar. If KGB99-27 and KGB99-32a have similar post–70 Ma thermal histories, then the biotite from KGB99-27 is required to have a higher closure temperature than KGB99-32a biotite. McDougall and Harrison (1999) argued that biotite closure temperature can vary by as much as 100 °C, and therefore if KGB99-27 biotite is ~300 °C, the biotite from KGB99-32a could be significantly lower. We do not argue for convenience that KGB99-32a biotite is less retentive than KGB99-27 biotite, we rather favor this argument because the MDD modeling of KGB99-27 K-feldspar, which provides our best quantitative method to assign argon closure temperatures, also does not support ~300 °C at 48 Ma. Thus, based on the incompatibility of the two biotites and the K-feldspar results, we suggest that the closure temperature of KGB99-32a biotite is at or below ~250 °C, rather than the nominal value of 300 °C.

MDD modeling of KGB99-32a K-feldspar from the pluton can be used to estimate the temperature prior to Miocene extension. Unfortunately, the age spectrum and kinetic data are not ideal from this K-feldspar because the Arrhenius plot (Appendix 2, see footnote 1) does not provide a well-behaved initial linear segment, and therefore the activation energy for argon transport can only be estimated to be 46 kcal/mol (see Lovera
et al., 2002). This limitation leads to uncertainty of the absolute temperature (~±50 °C) of the model, but it does not significantly affect the shape of the cooling history curve. Additionally, the measured age spectrum is also not ideal because the initial steps yield noisy age data, thereby allowing a wide range of temperature histories between 20 and 10 Ma. The complete MDD results for KGB99-32a are given in Appendix 1 (see footnote 1) and provide the thermal history analyses for both cooling-only and unconstrained models. Figure 10 portrays the MDD data that are most relevant in describing the pre-Miocene extension temperature and perhaps the timing of accelerated cooling. The measured spectrum shown in Figure 10A (green) is modified so that the initial 10% of gas released has an age of 13 ± 3 Ma, which accommodates the scatter of the first several heating steps. This modification allows model thermal histories to be constrained during this time interval, thereby providing a more realistic depiction of thermal history possibilities when considering the age uncertainties. As seen in the cooling models (Fig. 10B), the time of passage below 200 °C has a large uncertainty (red window shows it could be modeled as from 6 to 25 Ma); however, the majority of the thermal models (yellow window, from 12 to 18 Ma) are consistent with other geologic data (AFT data and constraints from the sedimentary record; see following) for accelerated cooling beginning at ca. 17 Ma. Importantly, the models are fairly tightly constrained in indicating maximum temperatures of ~225 °C prior to Miocene extension (Fig. 10B).

COMPARISON TO MIOCENE COOLING HISTORIES DERIVED FROM AFT AND (U-Th)/He THERMOCRONOMETERS

Timing of rapid Miocene extension is well calibrated by the sedimentary rock record in the Gold Butte region. Beard (1996) showed that the 26–18 Ma Rainbow Garden Member of the Horse Mountain Formation was deposited pre-extension (Fig. 6A) and that the 16–14 Ma Thumb Member was deposited synextension. The Miocene cooling history resulting from this extension has been investigated via various lower-temperature thermochronometers. Fitzgerald et al. (1991, 2009) applied AFT studies across the Gold Butte block (ovals of Fig. 5). Reiners et al. (2000) applied (U-Th)/He dating to both titanite (closure temperature of ~200 °C) and apatite (closure temperature of ~50–70 °C) as shown by the triangles in Figure 5, and Reiners et al. (2002) applied (U-Th)/He to zircon (closure temperature of ~200–230 °C).

The AFT ages (110 °C closure temperature) and (U-Th)/He apatite ages (~50–70 °C closure temperature) nearly all give similar dates of 14–17 Ma (mean [U-Th]/He apatite age of 15.2 ± 1 Ma; Reiners et al., 2000), synchronous with dates from the synextensional Thumb Member (14–16 Ma; Beard, 1996). This indicates that rocks across most of the block cooled through 60–110 °C during extensional unroofing and cooling of the Gold Butte block starting ca. 17 Ma. There is a good age-depth progression from 50–66 to 34–24 Ma immediately below the unconformity in two transects (Fig. 5; Fitzgerald et al., 1991, 2009), with younger ages toward the west. The transition to 17 Ma ages is within ~2–3 km of the unconformity in both transects (Fig. 5). The absence of a strong relationship between AFT or (U-Th)/He apatite ages and structural position for most of the deeper portions of the block implies rapid cooling rather than a progressive unroofing as is seen in some core complexes (Foster et al., 1993).

The combined Paleozoic, Mesozoic, and Tertiary section was 3–4 km thick prior to unroofing (Brady et al. [2000] and Reiners et al. [2000] used 2.5 km for the Paleozoic part of the section), which is thick enough to explain temperatures near the unconformity of ~75–100 °C at a geothermal gradient of ~25 °C/km. Thus, based on the change from 34 to 17 Ma in AFT ages, we place the pre-Miocene 100 °C isotherm ~2–3 km west of (~1.5-km-deep below) the Great Unconformity as shown in Figure 5. This also agrees with the present position of the post-Laramide 110 °C isotherm in the eastern Grand Canyon, which is within 1 km below the Paleozoic unconformity (Kelley et al., 2001).

The (U-Th)/He values from apatite and titanite (Reiners, et al. 2000) also help cross-check the inferred positions of the 100 °C and 200 °C pre–20 Ma isotherms (Fig. 5). The titanite data show progressively younger ages, ranging from 192 Ma at upper levels to 19 Ma ages deep in the block. This progression is compatible with progressive erosional denudation of the Colorado Plateau in the early Tertiary (Kelley et al., 2001) and migration downward of the ~200 °C isotherm to near the base of the block prior to rapid cooling at 17 Ma. Reiners et al. (2000) placed the 200 °C isotherm at inferred paleodepths of 9.3 km below the unconformity based on the tilted crustal section model and inferred a pre-extensional geothermal gradient of 20 °C/km. Thus, the titanite data are broadly compatible with the K-feldspar Ar data in placing the 200 °C isotherm as shown in Figure 5.
COMPLEXITIES IN THERMOCHRONOLOGIC DATA FROM THE WESTERN GOLD BUTTE BLOCK

Not all the available thermochronology is easily explained by the location of the 200 °C isotherm shown in Figure 5, and, hence, there is some suggestion of a more complex cooling history in the western part of Gold Butte block. In the far southwestern part of Figure 5, Ar muscovite ages are 89–93 Ma and AFT ages are 20–77 Ma, which are both anomalously old for the simple post–17 Ma cooling history under discussion in both structural models. These data may indicate these rocks cooled from 350 to 110 °C in the interval 90–77 Ma, in the Laramide. Fitzgerald et al. (1991) argued that “A more logical explanation is that this sample came from a fragment of the hanging wall that was incorporated into the fault zone and left behind during the tectonic denudation of the block.” The 77 Ma AFT is similar to 70–90 Ma (Laramide) ages from the Lower Granite Gorge (Kelley et al., 2001), Grand Wash Cliffs, and east of the Lake Mead fault in the Lost Basin Range to the south (Fitzgerald et al., 2009), which support the idea that this area may preserve a higher crustal level and older cooling history than of the rest of Gold Butte block.

Additional complexities arise from the 20–25 Ma zircon titanite (U-Th)/He ages in the central part of the Gold Butte block, which also give some uncertainty about the position of the 200 °C isotherm. These minerals are both inferred to have ~200 °C closure temperatures, such that the far western (U-Th)/He age on zircon (25 Ma) and titanite (19 Ma; sample 98PRBG-4 of Reiners et al., 2000) would be compatible with the 200 °C isotherm at ca. 20 Ma, approximately as shown in Figure 5. However, a kink in the eastward-younging (17–163 Ma) pattern of (U-Th)/He ages led Reiners et al. (2002, their figure 3) to put the 200 °C isotherm several kilometers farther east, at a paleodepth of ~10 km according to model 1 (Fig. 5). This may indicate a segmented (not intact) Gold Butte block, with different segments preserving different (Laramide and early Miocene) cooling histories. This alternative model may also be supported by 20–25 Ma zircon fission-track (ZFT) data in the western part of the Gold Butte block (Bernet et al., 2002). This system has a closure temperature of ~250 °C and also potentially supports a shallower 200 °C isotherm.

Given these caveats, we acknowledge alternate models and the likelihood of a structurally segmented western Gold Butte block. However, for the purposes of this paper, these uncertainties only argue that the 200 °C isotherm may be still shallower than shown in Figure 5, and hence that parts of the western Gold Butte block may have been shallower than shown either in model 1 or model 2 just prior to the pulse of 17–14 Ma extension.

SUMMARY AND DISCUSSION OF ALTERNATIVE STRUCTURAL MODELS BASED ON RESTORED CROSS SECTIONS AND ASSUMED GEOTHERMAL GRADIENTS

The published literature has continued to support the model that the Gold Butte block is one of the thickest, most intact, and best-exposed crustal sections in North America (Wernicke and Axen, 1988; Fryxell et al., 1992; Fitzgerald et al., 2009, p. 5). As an alternative, Figure 6 shows a structural model and composite cross section constructed by stacking the three cross-section lines shown on Figure 5 and assuming that south-side-up movement on the Gold Butte fault system has juxtaposed slightly different crustal levels within the same detachment system (as discussed herein). In this model, the detachment-bounded basement windows on the Tramp Ridge block (e.g., the Pigs Ear and West Dome) are interpreted to be analogous to the pre-erosion state of the surface of the Gold Butte block. This model involves slip on bedding-parallel weak zones near the Great Unconformity and adds this element to the synchronous slip model of Brady et al. (2000) to provide a more complete description of the extensional history of this region. This structural model suggests relatively modest extension of the cover (~25%; in agreement with estimates of 7%–38% by Brady et al., 2000), but lower extension (~10%) in the basement within the Nevada transition zone, and it models the western part of the block as residing ~8 km below the surface just before extensional exhumation, instead of 15–18 km below the surface.

A synthesis of low-temperature thermochronometers provides good constraints on the positions of the pre–20 Ma 100 °C and 200 °C isotherms in the Gold Butte block. The (U-Th)/He data on titanite is in general agreement with K-feldspar MDD thermal modeling in placing the 18–20 Ma, 200 °C isotherm near the western edge of the Gold Butte block. Apatite fission-track and (U-Th)/He data place the 100 °C isotherm at the east edge of the block, about 2–3 km below the Great Unconformity. The combined data indicate rapid cooling of the block to below 70 °C Ma at 15–17 Ma, in agreement with ages of synextensional sedimentary rocks.

The paleotemperature data can only be converted to paleodepth through evaluation of alternate restored cross sections and assumptions about geothermal gradients. Model 1 assumes a pre-Miocene geothermal gradient of 15–20 °C/km (Fryxell et al. [1992] used 15 °C/km; Fitzgerald et al. [2009] and Reiners et al. [2000] used 20 °C/km). The alternative (Model 2) assumes 25 °C/km. Either model can explain most of the thermochronology data, including new Ar-Ar data, although data from the southwestern part of the Gold Butte block seem to require some structural segmentation of the block near its western end. The concept of an intact crustal section extending to middle-crustal paleodepths has been fruitful in terms of using the Gold Butte block for calibration of multiple thermochronometers, but additional progress will require integration of structural studies with the thermochronology.

ACKNOWLEDGMENTS

This paper was initiated and reflects detailed mapping by a joint Massachusetts Institute of Technology–University of New Mexico (MIT-UNM) advanced field camp in January 1999. Support from the Crosby Professor fund at MIT for Karlstrom is gratefully acknowledged. We thank MIT faculty
S.A. Bowring and K.X. Whipple for their participation in the field course. Simon Hook of Jet Propulsion Laboratory (JPL) provided the thermal infrared multispectral scanner (TIMS) images and image interpretation. MIT students (including Eric Kirby, Karen Viskupic, and others), and UNM students (including J. Michael Timmons, Colin Shaw, and others) contributed to the mapping and map compilation. The manuscript has benefited from discussions and reviews of early versions of the manuscript by Sue Beard and Keith Howard. Reviews by Robert Brady, Paul Reiners, and Paul Umhoefer are gratefully acknowledged. Ar data were produced at the New Mexico Geochronology Laboratory (www.ees.nmt.edu/Geol/labs/Argon_Lab/NMGLR_lhomepage.html).

REFERENCES CITED

Karlstrom, K.E., Crow, R.S., Peters, L., McIntosh, W., Raucchi, J., Crossley, L.C., Umhoefer, P., and Dunbar, N., 2007, [*Ar*/Ar] and field studies of Quaternary basalts in Grand Canyon and model for carving

Manuscript accepted by the Society 17 August 2009.