Palaeoseismicity and pottery: Investigating earthquake and archaeological chronologies on the Hajiarab alluvial fan, Iran

Mark Quigley a,*, Morteza Fattahib,c,d, Reza Sohbatib,1, Armin Schmidte

a Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand
b Institute of Geophysics, University of Tehran, Iran
c Department of Geography, University of Sheffield, Winter Street, Sheffield S10 2TN, UK
d Oxford University Center of Environment South Parks Road, Oxford, OX1 3QY England, UK
e Archaeological Sciences, University of Bradford, UK

ARTICLE INFO

Article history:
Available online xxx

ABSTRACT

For millennia, humans have lived in locations that are highly vulnerable to large earthquakes, often out of strategic or cultural necessity and/or the proximity of these locations to resources necessary for survival. Despite the often catastrophic effects when large earthquakes occur, recent history reveals that human nature is to rebuild rather than relocate, implying that seismic activity is not a sufficient deterrent of population growth in tectonically vulnerable areas. In order to investigate whether this was the case for ancient civilisations, and thus perhaps a fundamental tenet of human behaviour, a palaeo-earthquake history was developed for the active Cheskin and Ipak Faults in northwestern Iran, and compared with the well-resolved archaeological history of the nearby 'Sagzabad cluster' settlements of Zagheh (7170–6300 BP), Ghabristan (6215–4950 BP) and Sagzabad (4050–2350 BP). Combining new geologic, geomorphic, and chronologic datasets revealed the presence of a fault-propagated anticline formed by large (Mw 6.5–7.0) earthquakes on a blind thrust fault that projects to seismogenic depth directly beneath the Sagzabad cluster settlement sites. Large earthquakes with a return period of <1000 y occurred on the Cheskin and Ipak Faults during human occupation of the Sagzabad cluster. Gaussian cumulative distribution modelling indicates a >90% probability under most faulting scenarios that the energy release from these earthquakes would have been of sufficient magnitude to generate peak horizontal acceleration (PHA) values at the Sagzabad cluster in excess of likely threshold values for complete settlement destruction. Poisson modelling assuming a time–displacement repeating model for earthquake recurrence indicates a 66 (±42) % probability of one (two) earthquakes that would generate PHA/C211 > 0.25 g occurring during occupation of Zagheh, a 79 (±55) % probability for Ghabristan, and an 88 (±65) % probability for Sagzabad. Despite the near certainty that the residents of these Holocene settlements experienced large destructive earthquakes, the near-continuous history of occupation at this area suggests that early humans were not apt to relocate in response to earthquake activity. Environmental (e.g., alluviation, stream channel avulsion, climate change), cultural and/or political factors may have been more important drivers of settlement shifts and abandonment at the Sagzabad cluster of Iran.

© 2011 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

Human settlements throughout the Himalayan-Alpine mountain belt have grown from primitive mid-Holocene villages into cities and megacities despite being situated in close proximity to tectonically active, earthquake-prone fault systems (Jackson, 2006). A prime example is the Iranian capital megacity of Tehran (Fig. 1), with a modern population of almost 14 million people. The city is flanked to the north by the active North Tehran Thrust Fault (Berberian and Yeats, 1999) and resides above a network of active faults (e.g., Niavaran, Lavizan, and Tarasht faults) that have deformed the alluvial gravels supporting Tehran’s infrastructure into a series of folds and fault scarps (Jackson, 2006; Abbassi and Farbod, 2009). The predecessors of modern Tehran were damaged or completely destroyed by earthquakes of probable moment magnitude (Mw 7) in the fourth century BC, 855, 958, 1177 and 1830.

* Corresponding author.
E-mail address: mark.quigley@canterbury.ac.nz (M. Quigley).

1 Present address: Nordic Laboratory for Luminescence Dating, Department of Earth Sciences, Aarhus University, Rise DTU, DK-4000 Roskilde, Denmark.

Ambraseys and Melville, 1982; Berberian and Yeats, 1999), with deaths likely on the order of hundreds or thousands (Jackson, 2006). However, the favourable location of this site on a major trade route encouraged rebuilding and growth rather than relocation, and Tehran grew to its modern size despite its seismic past. A Mw 7 earthquake centred in the city today would kill hundreds of thousands of people or more (Jackson, 2006). Perhaps driven by this potential loss of life, Iran’s rulers are now contemplating the feasibility of moving the country’s capital to a more tectonically stable setting and may be encouraging millions of its residents, via financial incentives, to relocate (Theodoulou and Sinaiee, 2010). The relocation of a capital city and many of its inhabitants to mitigate the impact of future earthquakes is globally unprecedented in the modern era, and if undertaken, would represent a major paradigm shift in contemporary human behaviour. One needs only to consider the recent rebuilding of cities destroyed during some of the largest earthquakes in the Himalayan-Alpine mountain belt over the last decade (e.g., 2008 Mw 7.9 Eastern Sichuan, China (~87,587 deaths), 2005 Mw 7.6 northern Pakistan (~86,000 deaths), 2003 Mw 6.6 Bam, Iran (~31,000 deaths), 2002 Mw 6.1 Hindu Kush, Afghanistan (~1000 deaths), and 1999 Mw 7.6 Turkey (~17,118 deaths)) to recognise that the historical precedent is to rebuild, rather than relocate, following catastrophic earthquakes.

This study poses the question, “Did earthquakes influence the settlement behaviour of our ancient ancestors?” Archaeological records from the Middle East suggest large earthquakes may have destroyed human settlements spanning back as far as 4000 a, although the human response to these earthquakes is unknown (Berberian and Yeats, 2001). A major earthquake in 747/748 AD has been considered to be responsible for the abandonment of the Decapolis region in Northern Jordan (Hoffmann and Kerner, 2002), although this is disputed (e.g., Lucke et al., 2005). Several authors have argued that earthquakes and related subsidence and/or tsunami-induced inundation caused the abandonment of ancient coastal settlements in western North America (Losey, 2005; Cole et al., 1996) and New Zealand (Goff and McFadgen, 2003). However, the authors are unaware of any irrefutable evidence that ancient human settlements in non-coastal settlements were abandoned due to the effects of, or as has been proposed for modern Tehran, the threat of large earthquakes. The focus of this study is to determine whether the decisions to relocate and/or abandon Holocene ‘tells’ on the Hajiarab alluvial fan in central Iran (Figs. 1 and 2) were influenced by the occurrence of large earthquakes.

This paper addresses this by developing and integrating new geologic, geomorphic and chronologic datasets to establish an earthquake chronology and seismic hazard analysis for the Holocene settlements of the Hajiarab fan. It then compares the earthquake history to the well-resolved archaeological history for the ‘Sagzabad’ settlements of Zagheh (7170–6300 BP), Ghabristan (6215–4950 BP) and Sagzabad (4050–2350 BP). The results provide insights into the relationship amongst ancient humans and their natural environment, with relevance for understanding the fundamental development of human society (e.g. Boyer et al., 2006).

2. Archaeological context

The three tells of the ‘Sagzabad Cluster’ are situated on the Hajiarab alluvial fan, part of the Qazvin alluvial plain on the central Iranian Plateau of northwest Iran (Figs. 1 and 2). The Ramand Mountains lie ~15 km to the south (Fig. 2). The tells are located within a distance of 2.6 km of each other and form a settlement sequence, being established on successively aggraded fan surfaces (Schmidt and Fazeli, 2007). 14C dating of organic samples and sealed contexts reveal that the oldest settlement, Zagheh, was occupied from 7170 BP (±156 at 2σ) to 6300 BP (±110 at 2σ) (Fazeli Nashli and Abbasnejad Sereshti, 2005). 14C ages from the second site, Ghabristan, range from 6215 BP (±105 at 2σ) for sediments directly beneath the cultural material to ca. 4950 BP, when the site was abandoned (Fazeli Nashli and Abbasnejad Sereshti, 2005). There is a settlement gap of about 900 y in the archaeological record, from both the Hajiarab fan and much of the broader region with the exclusion of the Shizar Tepe, until the settlement of Sagzabad at ca. 4050 BP (Fazeli Nashli and Abbasnejad Sereshti, 2005). This settlement, located just 0.3 km east of Ghabristan, was inhabited until ca. 2350 BP (Malek Shahmirzadi, 1977a: p.79).

The reason for the settlement shifts and remarkably long settlement hiatus in the Early Bronze Age is unknown, and the subject of particular scientific interest (e.g., Schmidt et al., 2011). Although a disruption of the social fabric through the Kura-Araxes peoples has been considered (Fazeli Nashli and Abbasnejad Sereshti, 2005), several early observations from the tells suggest that large earthquakes may have occurred during their habitation and may even have influenced settlement patterns. Early archaeological investigations of the Sagzabad site (Negahban, 1971, 1973, 1974a,b, 1976, 1977) uncovered, “complete but crushed skeletons of domesticated animals, lying side by side under collapsed walls, as

though they had perished in a stable that had been destroyed by some natural calamity such as a flood, or more likely, an earthquake. Subsequent Sagzabad archaeological investigations revealed the displacement of an undated charcoal layer and the rotation of blocks in alluvial deposits (Berberian et al. (1983, 1993)), and the collapse of a Late Bronze Age (c. 4000 ± 1600 BP) square brick column and tilting of a Late Bronze Age wall (Tala'i, 1998). Based on these observations, Berberian and Yeats (2001), speculated that a large earthquake on the Ipak Fault (Fig. 2) destroyed Sagzabad at ca. 4010–3510 BP. However, no palaeoseismic investigations of the Ipak Fault and broader region were undertaken to complement these archaeological observations.

3. Historical earthquakes: regional impacts of the 1962 M$_S$ 7.2 Buyin-Zahra earthquake

Iran is part of a tectonically active, diffuse boundary zone between the Arabian and Eurasian tectonic plates (Fig. 1). The Iranian Plateau, although much less seismically active than the Zagros and Alborz mountainous regions (Fig. 1) hosts several active faults with slip rates of >1 mm y$^{-1}$ (Bachmanov et al., 2004; Fattahi et al., 2006), and has experienced several destructive earthquakes in the last century, including the 1953 M$_S$ 6.5 Torud, 1962 M$_S$ 7.2 Buyin-Zahra and 2002 M$_w$ 6.4 Changureh earthquakes (Walker et al., 2005)(Ambraseys and Melville, 1982). The epicentre of the September 1st, 1962 Buyin-Zahra earthquake was located ~22 km SSE of the Sagzabad tells, and the natural response of the study site to this earthquake is instructive for understanding the potential impacts of palaeo-earthquakes on the tell. The Buyin-Zahra earthquake killed over 12,220 people, injured ~2800, and damaged beyond repair ~21,330 homes in 300 villages throughout the region (Ambraseys, 1963). More than 1800 aftershocks were recorded in the following months including two that were strong enough to cause further damage and collapse of houses (Ambraseys, 1963). The main earthquake occurred on the ESE-striking Ipak fault with a focal depth of ~20 km (Berberian, 1976), centroid depth of ~10 km (Priestley et al., 1994), M$_w$ 7.0, and epicentre location ~8 km south of the surface rupture along the eastern part of the Ipak fault surface trace (Fig. 2). The earthquake focal mechanism solution suggests almost pure thrusting on a 52° S dipping fault (Priestley et al., 1994). As expected, the epicentres of most aftershocks are located south of the Ipak Fault rupture trace, however there was at least one aftershock of M$_S$ ~ 5.0 (December 2, 1962) that was located ~5 km NNE of Buyin-Zahra and ~13 km N of the rupture trace (see Fig. 3 of Berberian and Yeats, 1999 for location), implying either stress triggering of a distinct fault or coeval rupturing of multiple faults during the Buyin-Zahra event. The Buyin-Zahra...
earthquake generated a discontinuous series of surface ruptures with a total length of ~95 km. Ruptures were grouped into a sequence comprising a 56 km long, south-dipping eastern segment (the source of the hypocentre) and a 39 km long north-dipping western segment linked via a ~5–10 km wide deformation zone in the vicinity of Rudak (Ambraseys, 1963; Berberian and Yeats, 2001) (Fig. 2). Maximum recorded values of co-seismic displacements were 1.4 m vertically and 0.6 m left-laterally (Ambraseys, 1963; Berberian and Yeats, 2001). Modified Mercalli Scale seismic intensity (MMI) was estimated at VIII and IX in the ~15 km wide region bounding the fault and VII in the region encompassing the Zagheh, Gabristan and Sagzabad tell sites (Fig. 2) (Ambraseys, 1963; Berberian and Yeats, 2001). Numerous small landslides and rock-falls occurred on hillslopes throughout the region, liquefaction features such as mud and sand volcanoes as well as cracks developed on the banks of the Hajarar River, and temporary reductions in discharge within underground water supplies (qanats) occurred during the earthquake (Ambraseys, 1963). New springs appeared in many places and old ones stopped flowing (Ambraseys, 1963), indicating the earthquake influenced subsurface water flow. Ambraseys (1963) suggested that a significant component of the main rupture did not propagate to the surface and was expressed by folding at the surface instead. A similar inference has been drawn for the 2002 Mw, 6.4 Changureh (Avaj) earthquake (Walker et al., 2005). These so-called ‘blind thrust fault’ earthquakes are common in Iran (Berberian and Yeats, 2001; Bachmanov et al., 2004; Walker et al., 2005), and due to the absence of surface ruptures, are typically recognised by surface folding, springs and drainage diversions that are commonly observed on alluvial fans (Lettis et al., 1997; Walker et al., 2005; Jackson, 2006).

4. Structural and geomorphic evidence for pre-historic earthquakes in the study region

On the basis of the archaeological observations described above, Berberian and Yeats (2001) speculated that the Sagzabad settlement was destroyed by an earthquake of similar or greater magnitude to the 1962 Buyin-Zahra event at ca. 4010–3510 BP. They argued that a smaller earthquake resulting from a shorter rupture length event, even of the Ipak fault segment closest to the Sagzabad cluster, (i.e. the Rudak fault segment, ~14 km away with a length of ~18 km) would not have been capable of generating MMI intensities of VII and VIII at Sagzabad. The Ipak Fault was claimed as, “the only one close enough to the Sagzabad cluster to be a candidate for the postulated earthquake destroying Sagzabad, and no geomorphic evidence of active folding above a blind thrust is present.” Finally, these authors suggested that the 1962 Buyin-Zahra earthquake may be a repeat of the c. 4010 ± 1500 BP postulated earthquake, giving a ‘maximum recurrence interval’ of approximately 3500–4000 y for the Ipak Fault.

Bachmanov et al. (2004) reported vertical offsets of presumed lower and middle Pleistocene deposits of 2–3 m along a segment of the western Ipak fault on the north side of the Ramand Mountains. Bachmanov et al. (2004) also reported left-lateral separations of 85–90 m from the ‘oldest generation of fans’ near the settlement of Ipak (35.623778 N, 50.308911 E), and offsets of 25 and 30 m of Late Pleistocene terraces across the eastern segment of the Ipak fault (see also Ambraseys, 1963). The location of these sites was not disclosed and hence these interpretations could not be verified. This reconnaissance mapping and inspection of remotely sensed SPOT imagery did not reveal supporting evidence for the large scale lateral displacements proposed by Bachmanov et al. (2004), and accordingly caution is required in interpreting this data. Field mapping and remote sensing did allow refinement of the position and inferred dip direction of the western segment of the Ipak fault in the study area (Fig. 2). Three Late Pleistocene and Holocene alluvial sequences (Q1–Q4) are present. The Cheskin Fault is exposed on the Q3, Latest Pleistocene to Early Holocene, surface.

Geological mapping of the alluvial plain between the northern piedmont of the Ramand Mountains and the Sagzabad Cluster revealed the presence of a NW-trending, >20 km long, ~0.75–1 km wide, elongate zone of anomalous, mildly elevated and steeply dissected topography that runs from south of the Danesfahan quarry, through the village of Cheskin, to the village of Rudak (Fig. 2). The linearity and apparent continuity of this feature with the Ipak fault near Rudak, and its surface-.trace parallelism with strands of the Ipak fault, suggest that this uplifted feature is fault related. Cross-sectional profiles derived from a Total Station survey perpendicular to the uplift (Fig. 3) and SRTM data indicate that the upper surface of the alluvial plain southwest of the feature maintains a relatively uniform dip of ~2.5° NE from the range front until the feature is reached, where the fan surface slope changes to ~3.4° SE and the topography is elevated ~5 m relative to a best fit line of uniform slope derived from adjacent, unperturbed upstream and downstream reaches of the fan (Fig. 3a). A similar perturbation of channel morphology is observed at the downstream end of the structure. The gross morphology of the land surface trending from SW to NE across the uplift thus consists of a relatively steeply SW dipping surface, a gently NE-dipping surface, a second, steeply SW dipping surface, and a gently NE-dipping back surface that ultimately rejoins the regional fan surface slope (Fig. 3a,b). Stream channels upstream of the uplift shows a transition from relatively straight, braided channels to more sinuous channels within ~300–500 m of the southern edge of the uplift, coincident with a decrease in channel slope (Fig. 3b). Similar changes from braided to meandering channel geometry have been replicated by decreasing channel slopes in stream table experiments (Schumm and Khan, 1972), implying that the changes in channel geometry reflect the uplift of the feature. Through the axis of the uplift, the channels are more steeply incised and flanked by small terraces, implying that the channels have cut down into the uplifting feature. Downstream of the uplift, the channels are wider and are bar braided, likely due to the increased sediment flux resulting from upstream incision into the uplift (Fig. 3b) (Ouchi, 1985). Collectively, the coincident changes in channel incision and fan slope across the uplift imply that a component of uplift has been synchronous with channel activity.

The uplifted feature is interpreted as an anticlinal fold, henceforth referred to as the Cheskin anticline, that has developed above a ‘blind’ thrust fault. The underlying fault appears to consist of at least two NE-dipping strands as indicated by the overall cross-sectional topographic asymmetry of the uplift and the sharp increases in slope on the SW-facing slopes of the SW edge and central part of the anticline (Figs. 2 and 3a). A small backthrust (Fig. 3a) in the vicinity of the topographic profile line (Fig. 2) is also apparent. The dip of the underlying fault(s) is unknown but is hypothesised using the geometry of the anticline. Elastic half-space models indicate that the dip of the fault underlying a growth anticline controls the position and relative magnitude of subsidence in the forelimb and backlimb regions (Ellis and Densmore, 2006). Analysis of the Cheskin anticline topographic profile and slope angle data (Fig. 3b) indicates the absence of a subsided region in the forelimb (i) relative to the mean fan slope, and a slightly subsided region in the backlimb (ii) relative to the mean fan slope. This morphology is best replicated by an underlying fault dip of ~30 ± 10° to the NNE (Ellis and Densmore, 2006). As no surface ruptures were observed in the field, it is suspected that the underlying fault is ‘blind’, i.e. does not reach the surface (e.g., Lettis...
et al., 1997). Although there are no constraints on fault depth, the short distance (≤150 m) from the forelimb to the topographic divide for both thrusts is favoured by models with shallow (i.e., <2 km depth) underlying fault tips (Ellis and Densmore, 2006). This interpretation of the underlying fault geometry has important palaeoseismic implications for the nearby Sagzabad cluster settlements (Fig. 3c). Earthquake focal depths in Iran are generally restricted to the upper crust (≤20 km depth) and most commonly occur in the 5–15 km depth range (Maggi et al., 2000). The Bam earthquake had a focal depth of ∼7 ± 2 km (Ramazi and Jigheh, 2006), although the extent to which this is representative of major Iranian palaeo-earthquakes is unclear, as this event only ruptured the upper half of the seismogenic crust (see Jackson, 2006). Southward projection of a range of possible Cheskin fault dips (15–45°) to a crustal column lying beneath the Sagzabad cluster reveals that the location of earthquake centroids associated with this fault are likely to have been in close proximity to the tell sites. For instance, the preferred fault dip (30°) based on anticline geometry places the fault at a depth of ∼8 km beneath the tell sites, which would have minimised the distance between likely regions of high moment release on the Cheskin fault and the tell sites, resulting in elevated peak ground acceleration and associated co-seismic damage at the surface.

5. Optically stimulated luminescence dating of fault-related alluvial deposits

5.1. Theory and methodology

In order to determine the chronology of earthquakes on the Ipak and Cheskin faults and assess whether these earthquakes occurred during the occupation of the Sagzabad tells, samples were obtained from deformed and undeformed alluvial deposits for dating by optically stimulated luminescence (OSL). When quartz and feldspar grains within a sedimentary sequence are buried, they begin to accumulate a trapped-charge electron population that increases in a measurable and predictable way in response to the ionising radiation dose to which the grains are exposed (Aitken, 1998). Exposure to sunlight releases the light sensitive trapped charge and resets the OSL signal. This process is commonly referred to as ‘zeroing’. The time elapsed since quartz grains were last exposed to sunlight can be determined by measuring the OSL signal from a sample, determining the equivalent radioactive dose (De) and estimating the rate of exposure of the grains to ionising radiation since they were buried (the ‘dose rate’; Dr) (Aitken, 1998). From these parameters, the burial age of well-bleached grains can be determined. OSL dating of alluvial sequences is presently used in...
a variety of contexts, including constraining the timing of palaeoseismic events (e.g. Fattahi et al., 2006; Quigley et al., 2006), flood events, and facies changes resulting from climate change (e.g. Quigley et al., 2007).

A total of 14 samples were obtained for OSL dating from 6 sites as part of an ongoing multi-disciplinary research program on the palaeo-environmental history of the Sagzabad cluster region (Schmidt et al., 2011). Here, discussion focuses on the samples that provide temporal constraints on the earthquake history. These include (a) fine-grained, sandy sheetflow alluvial sediments beneath abandoned alluviation surfaces on the crest of the Cheskin anticline (CF01, Figs. 2 and 4a) and a gently warped alluvial fan near Cheskin (CF02; Figs. 2 and 4b), and (b) a sandy-gravel channel fill deposit that correlates with channels associated with the topographic breaching of the anticline (MINE04; Fig. 4c) and overlies a sheetflow deposit (MINE03; Fig. 4c). It is hypothesised that the age of the Q3 anticlinal crest and Q3 warped fan sediments will provide temporal constraints on the abandonment of these alluviation surfaces and on fold growth subsequent to abandonment. The age of the Q1 channel is hypothesised to relate to the incision of the anticline and re-deposition of incised sediment in an aggradational channel downstream of the anticline, thus post-dating at least some phase of anticlinal uplift (Fig. 4c).

Samples were collected by driving 50-mm-diameter opaque stainless-steel tubes into cleaned alluvial stratigraphic sections. All samples were collected from depths greater than 45–50 cm. Samples from the deformed alluvial fans near Cheskin were collected by digging ~75 cm deep pits into the upper fan surface and sampling horizontally at the base of the pits. Dose rates were determined by ICP-MS measurement of U, Th and K concentrations from sediments obtained from within a 15 cm radius around the sample hole. All the experiments reported here were carried out using a Riso automated TL/OSL system. OSL was detected using an Electron Tubes bialkali PMT. Luminescence was measured through 7 mm Hoya U-340 filters. The sample was processed under subdued red light. The potentially light-exposed sediments at both ends of the tubes were extracted, and the sediment remaining was used for equivalent dose determination. A portion of the sample was wet-seeded to separate the quartz grains and immersed for two days in 1 N HCl to remove carbonate, followed by two days immersion in H2O2 to remove organic material. The grains were treated with 48% Fluorosilicic acid for 50 min in order to remove feldspar. The quartz separates were mounted as a monolayer (approximately 5 mg/disc) on 10 mm diameter aluminium discs using a silicon spray as adhesive. De was obtained using the single aliquot regeneration method of Murray and Wintle (2000). Laboratory beta dose rate was applied following Armitage and Bailey (2005). Sample moisture contents were determined by drying the samples at 40 °C in the laboratory. The conversion factors for water contents of Aitken (1985) and Aitken and Xie (1985) were used for the calculation of alpha, beta and gamma dose rates. Alpha and beta dose rates were corrected for attenuation due to grain size using the factors of Bell (1980) and Mejail (1979). Dose rates and optical ages for each sample are presented in Table 1.

5.2. Results

OSL dating of the Q3 anticlinal crest sediments suggests that the abandonment of the surface comprising the core of the Cheskin anticline occurred at ca. 8830 ± 5370 BP ago, assuming minimal crestal erosion (Fig. 4a; Table 1). Q3 alluvial fan deposits near Cheskin indicate that the abandonment of this fan occurred at ca. 12,740 ± 3150 BP assuming minimal crestal erosion. Collectively, these results indicate that a minimum of ~5 m of Holocene vertical uplift on the Cheskin anticline; equivalent to the height of the surfaces above the adjacent alluvial surface to the south. OSL dating of the Q1 channel suggests that the anticline was breached by incising streams in at least one location by at least 2150 ± 1590 BP. The relationships amongst alluviation and tectonic activity are likely to be complicated given Holocene climate change in this region (Schmidt et al., 2011). The geomorphic disruption of modern streams crossing the anticline suggests that anticlinal uplift is ongoing. Although there are considerable errors associated with the age chronology, and uncertainty associated with relationship of

Table 1
Optically stimulated luminescence data and optical ages.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lat. (°N)</th>
<th>Long. (°E)</th>
<th>Depth (cm)</th>
<th>K%</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>De (Gy) ± Dose (Gy/ka)</th>
<th>Optical age (ka) ± From (BP) To (BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINE 03</td>
<td>35°46’50”</td>
<td>49°44’34”</td>
<td>178</td>
<td>2.26 ± 0.01</td>
<td>10.2 ± 0.1</td>
<td>2.72 ± 0.1</td>
<td>32.92 ± 10.44</td>
<td>3.73 ± 0.17</td>
</tr>
<tr>
<td>MINE 04</td>
<td>35°46’50”</td>
<td>49°44’34”</td>
<td>80</td>
<td>3.02 ± 0.01</td>
<td>2.53 ± 0.1</td>
<td>9.23 ± 0.61</td>
<td>3.00 ± 0.17</td>
<td>1.21</td>
</tr>
<tr>
<td>CF-01</td>
<td>35°44’11”</td>
<td>49°50’14”</td>
<td>60</td>
<td>2.04 ± 0.01</td>
<td>8.4 ± 0.1</td>
<td>3.03 ± 0.1</td>
<td>41.83 ± 10.06</td>
<td>3.28 ± 0.16</td>
</tr>
<tr>
<td>CF-02</td>
<td>35°46’06”</td>
<td>49°46’24”</td>
<td>62</td>
<td>2.44 ± 0.01</td>
<td>6.7 ± 0.1</td>
<td>2.07 ± 0.1</td>
<td>30.31 ± 18.34</td>
<td>2.43 ± 0.17</td>
</tr>
</tbody>
</table>

* Equivalent dose.
* Total dose rate.

Earthquake source & MD (m) & AD (m) & RA (km) & M_w & M_w \\
--- & --- & --- & --- & --- & --- \\
IPAK FAULT – 1962 Bo’in Zahra & 1.5 & 0.4 & 3014 & 7.2 ± 0.3 & 7 \\
IPAK FAULT – Western segment & 1.0 & 0.3 & 1227 & 6.9 ± 0.2 & 6.7 \\
IPAK FAULT – Eastern segment & 1.2 & 0.3 & 1777 & 7.0 ± 0.2 & 6.8 \\
CHESKIN FAULT (30’ dip) & 0.8 & 0.2 & 1000 & 6.9 ± 0.3 & 6.7 \\
CHESKIN FAULT (52’ dip) & 0.8 & 0.2 & 635 & 6.7 ± 0.2 & 6.5 \\
CHESKIN + EASTERN IPAK & 1.4 & 0.4 & 2772 & 7.2 ± 0.3 & 7 \\

$^a\log (MD) = -0.655(0.34) + 0.42(0.23) \times \log (SRL);$ modified from Wells and Coppersmith (1994).

$^bAD = 0.27(MD)$ from best fit M_w.

$^cM_w = 0.665(0.34) - 10.7$ with best fit $AD = 0.5 ± 0.3 × MD$.

$^dM_w = 0.665(0.34) - 10.7$ with best fit $AD = 0.27 × MD$.

6. Palaeoseismicity of the Ipak and Cheskin faults

6.1. M_w determinations from fault source parameters

If the $M_s 7.2 (M_w 7.0)$ 1962 Buyin-Zahra earthquake is a suitable analogue for large palaeo-earthquakes on the Ipak Fault, then the geometric and seismological characteristics of this historical rupture may provide insight into the moment magnitude M_w of palaeo-earthquakes for this area. In estimating M_w for palaeo-earthquakes, a commonly used methodology is to use established regressions from historical earthquakes that link fault source parameters (e.g., surface rupture length, displacement, rupture area) to seismologically determined values of M_w (Wells and Coppersmith, 1994). To test the suitability of these regressions for the study region, the Ipak Fault source parameters associated with Buyin-Zahra earthquake were input into the regressions of Wells and Coppersmith (1994) to derive a hypothetical M_w to compare to the seismologically recorded value. Surface rupture length (SRL) and rupture area (RA) were used as input parameters because these regressions show the strongest correlations and lowest standard deviations with M_w in the Wells and Coppersmith (1994) dataset (Table 2a). Maximum displacement (MD) was used to derive M_w despite a confidence level of <95% in the Wells and Coppersmith (1994) dataset. MD was computed from vector sum of the maximum horizontal and vertical slip components (=1.5 m). To derive RA, the subsurface rupture length (~119 km) was determined using the empirical relationship subsurface RL = 1.25 × SRL (Wells and Coppersmith, 1994). An average fault dip of 52° (as indicated from the seismology) was assumed, with a rupture depth extent equivalent to the hypocentral depth of 20 km (Berberian, 1976) on the basis that most mainshocks for large earthquakes are located at or near the base of the seismogenic zone (e.g., Sibson, 1987). Although the focal mechanism for the Buyin-Zahra earthquake indicates almost pure thrusting, M_w was derived using regression parameters for both reverse and strike-slip-dominated earthquakes given the possibility of strike-slip components of displacement on the Ipak Fault (Berberian, 1976), SRL-RA-Mw regressions systematically over-predict the M_w for the Buyin-Zahra earthquake while MD regressions systematically under-predict the M_w (Table 2a). From the Wells and Coppersmith (1994) datasets, the Buyin-Zahra earthquake appears to have had a relatively long SRL, large RA, and small MD for its M_w compared to the global dataset of historical earthquakes (although similar values have been recorded elsewhere) (Table 2a). Thus, while M_w estimates for the Ipak and Cheskin Faults were derived using these regressions, M_w was estimated according to Hands and Kanamori (1979)

$M_w = 2/3 \times \log (μ × AD × RA) − 10.7$ (1)

using a crustal rigidity modulus ($μ$) of $3 × 10^{11}$ dyn/cm², an average displacement (AD) equivalent to 0.5 ± 0.3 × MD (maximum displacement) (Wells and Coppersmith, 1994), and the RA computed above. This method results in a value of $M_w (7.2 ± 0.3)$ that is more consistent with the measured M_w (Table 2b). This formula was inverted using $M_w = 7.0$ to derive a ‘best-fit’ AD–MD ratio (AD = 0.27MD), and assumed that historical ruptures on both the Ipak and Cheskin Faults maintained a similar AD–MD ratio, realising that this is likely to be the biggest uncertainty in this calculation (Table 2b). The Hands and Kanamori (1979) seismic moment relation was then to derive M_w estimates for various earthquake scenarios on the Ipak and Cheskin faults (Table 2b). As the Buyin-Zahra earthquake ruptured across two fault segments of 56 km and 39 km length (Ambraseys, 1963), it is possible that these segments may have ruptured independently in the past. Assuming that the rupture geometry of these faults was similar to that exhibited during the Buyin-Zahra earthquake, Eq. (1) was used to derive M_w estimates for these faults if they ruptured separately. The same hypocentral depth, and fault dips were used as

<table>
<thead>
<tr>
<th>Rupture type</th>
<th>M_w</th>
<th>$ln PHA$ [gals]</th>
<th>$σ_{PHA}$</th>
<th>PHA [gals]</th>
<th>PHA [g]</th>
<th>MMI</th>
<th>z</th>
<th>CDF</th>
<th>P PHA > 0.25 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bo’in Zahra earthquake</td>
<td>7</td>
<td>5.53</td>
<td>0.41</td>
<td>251.86</td>
<td>0.26</td>
<td>8.0</td>
<td>-0.07</td>
<td>0.47</td>
<td>53</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>7</td>
<td>6.60</td>
<td>0.41</td>
<td>735.15</td>
<td>0.75</td>
<td>9.5</td>
<td>-2.71</td>
<td>0.00</td>
<td>99</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>7</td>
<td>6.38</td>
<td>0.41</td>
<td>592.14</td>
<td>0.60</td>
<td>9.2</td>
<td>-2.17</td>
<td>0.02</td>
<td>98</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>5</td>
<td>5.99</td>
<td>0.41</td>
<td>398.62</td>
<td>0.41</td>
<td>8.6</td>
<td>-1.20</td>
<td>0.12</td>
<td>88</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>5</td>
<td>6.59</td>
<td>0.43</td>
<td>728.80</td>
<td>0.74</td>
<td>9.5</td>
<td>-2.56</td>
<td>0.01</td>
<td>99</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>5</td>
<td>6.32</td>
<td>0.43</td>
<td>557.91</td>
<td>0.57</td>
<td>9.1</td>
<td>-1.93</td>
<td>0.03</td>
<td>97</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>5</td>
<td>6.58</td>
<td>0.43</td>
<td>347.76</td>
<td>0.35</td>
<td>8.4</td>
<td>-0.82</td>
<td>0.22</td>
<td>78</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>5</td>
<td>6.58</td>
<td>0.44</td>
<td>720.77</td>
<td>0.74</td>
<td>9.5</td>
<td>-2.45</td>
<td>0.01</td>
<td>99</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>5</td>
<td>6.27</td>
<td>0.44</td>
<td>529.78</td>
<td>0.54</td>
<td>9.0</td>
<td>-1.75</td>
<td>0.04</td>
<td>96</td>
</tr>
<tr>
<td>Cheskin – East</td>
<td>5</td>
<td>6.75</td>
<td>0.44</td>
<td>313.42</td>
<td>0.32</td>
<td>8.3</td>
<td>-0.56</td>
<td>0.29</td>
<td>71</td>
</tr>
</tbody>
</table>

R – closest distance Sagzabad cluster to rupture in km.

M_w – best estimate earthquake moment magnitude from Table 2b for range in best fit M_w except where specified.

PHA – peak horizontal acceleration at Sagzabad cluster.

$σ_{PHA}$ – uncertainty in value of ground motion parameter.

MMI – Modified Mercalli Index value.

z – standard normal variate.

CDF – value of cumulative distribution function of standard normal distribution.

P PHA > 0.25 g – % probability of PHA exceeding 0.25 g during earthquake.

for the Buyin-Zahra earthquake to calculate the RA for each segment. To determine the MD, the y-intercept of the Wells and Coppersmith MD-SRL reverse fault regression line was modified in order to derive a regression line with the same slope as their line, but passing through the SRL-MD intersection point from the Buyin-Zahra earthquake

$$ \log(\text{MD}) = -0.655 + 0.42 \times \log(\text{SRL}) $$ (2)

This regression was used to derive the likely MD for 56 and 39 km length ruptures, estimated AD using the AD–MD relation described previously, and input this data into (1). Using this method, best fit \(M_w \) values for the western and eastern fault segments are 6.7 and 6.8 respectively (Table 2b).

Finally, three scenarios were considered for the Cheskin fault: an independent rupture associated with SRL of \(\geq 20 \) km on a 30º dipping fault, an independent rupture associated with SRL of \(\geq 20 \) km on a 52º dipping fault (same as the Ipak Fault), and a linked Cheskin – eastern Ipak fault rupture with a total SRL of \(\geq 76 \) km on a fault with the dip weighted between the 30º dipping Cheskin and 52º dipping Ipak faults. The methods outlined above were used to determine RA (using a 20 km hypocentral depth and fault dips of 30º and 52º for the Cheskin Fault), MD and AD. Best fit \(M_w \) values for the Cheskin fault only are \(M_w \) 6.7 (30º dip) and \(M_w \) 6.5 (52º dip) and for the combined Cheskin-Ipak fault rupture is \(M_w \) 7.0 (Table 2a,b).

6.2. Fault-slip rates and recurrence intervals

Constraints on the uplift rate of the Cheskin anticline are confined to the ca. 8830 ± 5370 BP to \(\leq 2150 \pm 1590 \) BP interval captured by OSL dating of the sedimentary deposits. The crest of the anticline is uplifted ~5 m on the southern (frontal) thrust relative to a planar surface projected from the adjacent, undeformed fan and ~3 m across the northern thrust. On a 30º dipping fault, this cumulative uplift of ~8 m equates to \(\sim 16 \) m of purely dip-slip movement. If anticline growth has been confined to the ca. 8830 to ca. 2150 BP interval, this equates to a fault slip rate of 2.4 mm y\(^{-1}\) and anticline uplift rate of 1.2 mm y\(^{-1}\). If anticline uplift is still ongoing, either co-seismically (e.g., during the Buyin-Zahra event) or aseismically, then the minimum fault-slip rate is 1.8 mm y\(^{-1}\) and minimum anticline uplift rate is 0.9 mm y\(^{-1}\). Erosion of the anticlinal crest, sedimentation at the forelimb, a shallower fault dip, an oblique component of fault slip, and/or a tighter age bracket for the fault-related sediments would all result in a faster fault slip rate and shorter earthquake recurrence interval. Differential erosional lowering of the landscape adjacent to the anticline, a steeper fault dip, and/or broader age bracket for the fault-related sediments would result in a slower fault slip rate and longer earthquake recurrence interval.

Using the estimated MD value of 0.8 m for a Cheskin Fault-only rupture derived from Eq. (2) (Table 2a,b) and assuming a repeating-displacement earthquake model, the \(M_w \) 6.7 Cheskin fault earthquake recurrence interval is estimated as \(\sim 441 \) y from ca. 8830 BP to present. Using the estimated MD value of 1.4 m for a coupled Cheskin-eastern Ipak fault rupture, the \(M_w \) 7.0 earthquake recurrence interval is \(\sim 775 \) y from ca. 8830 BP to present. Although these recurrence intervals seem short relative to the \(\sim 3500–4000 \) y Ipak Fault ‘maximum’ recurrence interval proposed by Berberian and Yeats (2001), their estimate is somewhat unconstrained given the lack of fault based palaeoseismic data in their study. The lack of damage to a number of Safavid structures (c. AD 1600) in the region, such as bridges, caravanserais, and mausoleums that suffered minor damage during the Buyin-Zahra earthquake, suggests a minimum quiescent period of about 400 y (Berberian and Yeats, 2001) prior to the Buyin-Zahra earthquake, consistent with the estimated recurrence interval from the Cheskin Fault.

6.3. Palaeo-PHA and MMs at the Sagzabad cluster

Peak horizontal acceleration (PHA) is the most commonly used ground motion parameter for seismic hazard assessments. PHAs for the Sagzabad cluster were derived using the global attenuation relationship of Campbell and Bozorgnia (1994) derived from accelerogram data from historical earthquakes,

$$ \text{In PHA(gals)} = 3.512 + 0.904 M_w $$

$$ - 1.328 \ln \left(R^2 + \left[0.149 \exp(0.647 M_w) \right]^2 \right) $$

$$ + (1.125 - 0.112 \ln R - 0.0957 M_w) $$

where \(R \) is the closest distance to the fault rupture (in kilometres), MMI at the tell sites was estimated using the correlation formula of Trifunac and Brady (1975)

$$ \text{log PHA (cm s}^{-2}\text{)} = 0.014 + 0.30 \text{MMI} $$

The Sagzabad cluster lies ~22 km NNE of the 1962 Buyin-Zahra earthquake epicentre at a distance of ~24 km from the hypocentre. Ambraseys (1963) reported a MMI of VII at the tell sites following the 1962 Buyin-Zahra earthquake. Using the attenuation and PHA–MMI formulas above, a PHA of 0.26 g and MMI of VIII were derived for this event. While most villages within 3–8 km of the Ipak fault surface ruptures were completely destroyed by the 1962 Buyin-Zahra earthquake, most villages in the vicinity of the Sagzabad cluster were only partially damaged (Ambraseys, 1963), suggesting that one or both of the equations above may slightly over-estimate the PHA and MMI for the study site.

For the pre-historic earthquakes associated with a Cheskin Fault only or Cheskin Fault – eastern Ipak Fault rupture, a range of \(R \) was considered given the uncertainties in subsurface fault geometry. All PHA estimates are \(\geq 0.3 \) g. It is likely that PHA’s \(\geq 0.25 \) (MMI \(\geq VIII \)) would have caused complete destruction of weak materials such as the adobe huts of the Sagzabad cluster. Gaussian cumulative distribution functions for the Buyin-Zahra earthquake indicate a 53% probability that PHA’s of \(\geq 0.25 \) occurred at the Sagzabad cluster site during this event (Table 3). For earthquake ruptures involving the Cheskin fault, there is a \(\geq 90\% \) probability that PHA’s of \(\geq 0.25 \) would be reached, with the exclusion of a Cheskin Fault only rupture on a 45º dipping fault. Given the earthquake recurrence intervals developed above, 11 or more earthquakes of sufficient magnitude to destroy the Sagzabad settlements have occurred in the study region since ca. 8830 ± 5370 BP, equivalent to a mean annual rate (\(\lambda_m \)) of \(\geq 0.001246 \) events per year. Using a Poisson distribution model

<table>
<thead>
<tr>
<th>(\lambda_m)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_{2\text{-}2 \text{ events}})</th>
<th>(P_{2\text{ events}})</th>
<th>(P_{3\text{ events}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001245753</td>
<td>66.2</td>
<td>79.3</td>
<td>88</td>
<td>41.9</td>
<td>54.5</td>
<td>65.3</td>
</tr>
</tbody>
</table>

\(\lambda_m \) = Mean annual rate of earthquakes with exceedence 0.25 g PHA occurring during occupation of Zagheh, Ghabristan, and Sagzabad for one and two events.

For many centuries, Persian civilisation has recognised that active, earthquake-prone faults provide opportunity despite the hazard (Jackson, 2006). Relatively less permeable fault gouge may form a subsurface barrier to the water table, thus elevating it and locally generating springs and/or lakes that create refugia in many otherwise inhospitable locations. This fault-controlled water supply determines where many of Iran’s settlements were situated, and also why many of them (e.g., Bam, Sefidabeh) have been destroyed by earthquakes in recent times. Historically, the precedent is for such settlements to be rebuilt. The authors questioned whether a similar principle applied in the distant past (ca. 7170 BP). Using the geological and archaeological records from the ‘Sagzabad cluster’ settlements of Zagheh, Ghabristan, and Sagzabad, a previously undocumented fault-propagated anticline was identified, and a fault dip inferred (based on the anticline asymmetry) that places this fault beneath the Sagzabad cluster at seismogenic depths, thus providing a proximal source for large earthquakes. Analogous, north-dipping thrust faults are present elsewhere in the region (e.g., Eshtehard Thrust; see Fig. 3 of Berberian and Yeats, 1999) and the epicentres of some earthquakes following the Buyin-Zahra event occurred to the north of the Ipak Fault, suggesting the presence of seismically active north-dipping faults (Berberian and Yeats, 1999). Palaeoseismic investigation of the Cheskin Fault suggests that this fault presents a major hazard to the tell sites whether it ruptures independently, during $M_w \sim 6.5$–6.7 earthquakes with a recurrence interval of ca. 440 y, or with the Ipak Fault, during $M_w \sim 7.0$ earthquakes with a recurrence interval of ~ 775 y. Expected PHAs for Cheskin fault-only and coupled Cheskin-Ipak Fault ruptures are well in excess of likely threshold PHAs for complete destruction of type-D structures such as the adobe huts and walls that would have accommodated the peoples of the Sagzabad cluster. Gaussian cumulative distribution modelling indicates a $>90\%$ probability that earthquakes would have caused PHAs in excess of 0.25 g at the Sagzabad cluster for most scenarios of both Cheskin and coupled Cheskin-East Ipak fault ruptures. Poisson modelling assuming a time and displacement repeating model for earthquake recurrence indicates a >66–88% probability that at least one earthquake occurred during occupation of each of the tell sites, and a 42–65% probability that two earthquakes occurred during occupation of each site, indicating it is highly likely that these settlements were destroyed by at least one earthquake, and more likely than not that both the Ghabristan and Sagzabad settlements were destroyed by at least two earthquakes. This data supports the archaeological evidence from the Sagzabad tell for at least one palaeo-earthquake during settlement occupation (Berberian and Yeats, 2001).

It is difficult to resolve whether earthquakes may have caused the observed settlement shifts and/or abandonment at the Sagzabad cluster in the absence of a numerical earthquake chronology. However, both the proposed minimum number of large earthquakes (~ 11) and short earthquake recurrence intervals (<1000 y) throughout the Holocene strongly support the hypothesis that the people living in the Sagzabad cluster experienced large, settlement destroying earthquakes during their residence. With the exception of the 900-year settlement hiatus from ca. 4950 to 4050 BP, the Hajiarab alluvial fan was continuously occupied by these settlements from ca. 7170 to 2350 BP. It is unlikely that the shift from Zagheh to Ghabristan, a distance of only ~ 2.6 km was a result of an earthquake, as the people of Zagheh may have well have observed that effects of a large earthquake were evident beyond their immediate settlement site. The 1962 Buyin-Zahra earthquake provides a modern example of the effects (e.g., fault scarps, mass movements, liquefaction features, fractures) that might have been observed. It cannot be determined whether the abandonment of Ghabristan and/or Sagzabad was due to large earthquakes. However, the probability of multiple events during the residence time at the sites (Table 4) suggests that these settlements likely experienced at least one earthquake without site abandonment.

At this juncture, environmental factors such as alluviation, stream channel avulsion, and climate change (Schmidt et al., 2011), and political factors such as disruptions to trade and social fabric (Fazeli Nashli and Abbassnejad Sereshhti, 2005) must also be considered as equally viable drivers for Holocene settlement patterns at the Sagzabad cluster of Iran.

Future palaeoseismic investigations of the Cheskin and Ipak faults will better constrain earthquake chronologies and provide a more robust test of the links between earthquakes and cultural evolution in this region. Specifically, fault trenching, geophysical investigations, and dating of alluvial sequences that are faulted and/or have ‘ponded’ upstream of the growing Cheskin anticline will provide more insight into the subsurface geometry of the Cheskin Fault and the timing of palaeo-earthquakes. At this stage, the derived fault slip rates and earthquake recurrence intervals should be viewed cautiously, in light of the reconnaissance-type nature of our field investigations and various limitations of our datasets. Future archaeological investigations may provide additional insights into the effects of palaeo-earthquakes on the Sagzabad cluster settlements.

Acknowledgements

We are thankful to Ghasem Azizi, Mehran Maghsoudi, and Hassan Fazeli for their collaborative efforts with fieldwork and field trip logistics. We thank Richard Walker for a thorough review of this manuscript.

References

Berberian, M., Qorashi, M., Arzhang-ravesh, B., Mohajer-Ashjai, A., 1992. Recent tectonics, seismotectonics and earthquake fault hazard investigations in the...