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Abstract  16 
 17 
Meteorological and geophysical hazards will concur and interact with coronavirus disease 18 
(COVID-19) impacts in many regions on Earth. A comparison of COVID-19 epidemic 19 
projections with multi-hazard time-series curves enables delineation of plausible multi-hazard 20 
scenarios for selected countries (United States, China, Australia, Bangladesh) and regions 21 
(Texas). In multi-hazard crises, governments and other responding agents may be required to 22 
make complex, highly compromised, hierarchical decisions aimed to balance COVID-19 23 
risks and protocols with disaster response and recovery operations. Contemporary socio-24 
economic changes (e.g., reducing risk mitigation measures, lowering restrictions on human 25 
activity to stimulate economic recovery) may alter COVID-19 epidemiological dynamics and 26 
increase future risks relating to natural disaster and COVID-19 interactions. For example, the 27 
aggregation of evacuees into communal environments and increased demand on medical, 28 
economic, and infrastructural capacity associated with the latter may increase COVID-19 29 
exposure risks and vulnerabilities. COVID-19 epidemiologic conditions at the time of a 30 
natural disaster might also influence the characteristics of emergency and humanitarian 31 
responses (e.g., evacuation and sheltering procedures, resource availability, implementation 32 
modalities, and assistance types). A simple epidemic phenomenological model with a 33 
concurrent disaster event predicts a greater infection rate following events during the pre-34 
infection rate peak period compared with post-peak events, highlighting the need for enacting 35 
COVID-19 counter measures in advance of seasonal increases in natural hazards. Inclusion of 36 
natural hazard inputs into COVID-19 epidemiological models could enhance the evidence 37 
base for: informing contemporary policy across diverse multi-hazard scenarios, defining and 38 
addressing gaps in disaster preparedness strategies and resourcing, and implementing a 39 
future-planning systems approach into contemporary COVID-19 mitigation strategies. Our 40 
recommendations may assist governments and their advisors to develop risk reduction 41 
strategies for natural and cascading hazards during the COVID-19 pandemic. 42 
 43 
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1. Introduction 48 

 49 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated 50 

coronavirus disease (COVID-19) emerged from probable zoonotic origin from China’s Hubei 51 

province in early December 2019. The virus and disease are collectively referred to as 52 

COVID-19 in this paper. COVID-19 rapidly spread around the world and was declared a 53 

pandemic by the World Health Organization (WHO) on 11 March 2020 54 

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen). 55 

As of 21 April 2020, the John Hopkins University coronavirus dashboard 56 

(https://coronavirus.jhu.edu/map.html) reports more than 2.5 million confirmed infections 57 

and more than 170,000 fatalities globally. 58 

 59 

This paper uses quantitative and qualitative measures to assess the likelihood of natural 60 

hazards coinciding with, and influencing epidemiological characteristics of, the COVID-19 61 

pandemic. Natural hazard curves for seasonal (e.g., tropical cyclone, floods, heat waves, 62 

monsoons, tornadoes) hazards are plotted against COVID-19 timeseries forecasts (Figure 1). 63 

Stochastic (e.g., earthquakes, volcanic eruptions) hazards are also considered in a general 64 

sense but not specifically analysed. The effects of these natural hazards on human life 65 

depends on the severity of the hazard, the exposure of humans and infrastructure to it, the 66 

vulnerability of exposed elements, and the ability to rapidly respond and recover. COVID-19 67 

has the potential to significantly impact the exposure, vulnerability and response elements 68 

associated with natural disasters and vice-versa; a systems approach to understanding 69 

components of risk and resilience is thus required (e.g., Simonovic, 2011; Harrison and 70 

Williams, 2016).  71 

 72 

Approaches to mitigating COVID-19 risks share some commonalities with natural disaster 73 

mitigation. For example, using social distancing protocols to reduce the risks of COVID-19 74 

hazard exposure could be considered analogous to land-use planning to reduce natural 75 

disaster (e.g., flood, earthquake hazards) exposure risks (Quigley et al., 2020). COVID-19 76 

health and service policies aimed to preference vulnerable groups including the elderly, those 77 

with ill health and comorbidities, the homeless or underhoused, and people from vulnerable 78 

socioeconomic groups that might be vulnerable to financial, psychosocial and/or physical 79 

challenges (The Lancet, 2020), are crudely analogous to defining and enforcing seismic 80 
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building codes, and strengthening earthquake-vulnerable buildings, to reduce life safety risks 81 

(e.g., Stucchi et al., 2009; Hosseini et al., 2009) .  82 

 83 

Epidemiological forecasts of COVID-19 infections and fatalities (Figure 1) exhibit large 84 

spatial and temporal variations due to differences in modelling approaches, mitigation 85 

scenarios (e.g. “Supress and Lift” strategy used in Hong Kong and Singapore; see Normile, 86 

2020), health system capacity, epidemiological parameters, and demographic parameters 87 

(https://covid19-scenarios.org/). Changes induced by external (e.g., the concurrency of other 88 

emergent phenomena such as natural disasters) and internal factors (e.g., relaxation of social 89 

distancing measures, return-to-work decisions) can impact on many of these parameters 90 

significantly and thus create more uncertainty in infection and fatality predictions (Figure 1). 91 

It is therefore challenging to define what a ‘worse-case’ COVID-19 fatality scenario is, given 92 

the susceptibility of forecasts to major perturbations induced by phenomena with uncertain 93 

spatial and temporal properties.  94 

 95 

Given this context, resolving policy priorities in response to COVID-19 pandemic and 96 

associated compounding effects of natural hazards involves a complex higher-level decision-97 

making process that must inevitably be guided by scientific insight (Colwell and Machlis, 98 

2019; Filippelli, 2020). In view of this, our study seeks to provide a qualitative analysis of the 99 

combined effect of COVID-19 epidemic and external perturbations, specifically natural 100 

disasters, to propose that: 101 

 102 

(i) COVID-19 epidemiological models may be highly sensitive to natural disasters, 103 

and thus inclusion of seasonal and / or stochastic events might better enable worst-104 

case scenarios to be considered,  105 

(ii) contemporary COVID-19 related policies, such as relaxations of mitigative 106 

measures, may increase the probability that diverse multi-hazards will interact 107 

with the COVID-19 crisis and stimulate concurrent and cascading crises, and  108 

(iii) disaster preparedness strategies and resourcing should carefully consider the 109 

impact of COVID-19 on future response operations, including: adaptation of 110 

implementation modalities to account for the disruption of critical supply chains, 111 

the potential localisation of response efforts due to limited mobility of 112 

humanitarian actors, availability of evacuation centres with capacity for social 113 

distancing, the capacity of humanitarian workers/volunteers and medical staff to 114 
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respond to natural disasters in COVID-affected regions, and the availability of 115 

personal protective equipment and medical equipment (e.g., respirators) to 116 

incorporate large spikes in need.  117 

 118 
 119 

 120 
 121 
 122 
Figure 1. Epidemiological forecast models for COVID-19 fatalities and infections for (a) the 123 
United States, (b) Australia, (c) Bangladesh and (d) China, developed using https://covid19-124 
scenarios.org/ software and boot-strapping reproduction number (1.9 ≤ Ro≤3.2), simulation 125 
date ranges, and % mitigation estimate parameters (see legend in each panel) to maximize 126 
goodness-of-fit between confirmed cumulative fatalities and model curves. Epidemiological 127 
curves are labelled in the format COUNTRY_AVERAGE 128 
Ro_MITIGATION#1%EFFECTIVENESS_ ±MITIGATION#2%EFFECTIVENESS_ 129 
±MITIGATION#3%EFFECTIVENESS. Epidemiological curves are subject to large and 130 
spatiotemporally varying uncertainties and are thus intended for illustrative purposes only, 131 
rather than accurate and precise forecasts. The grey box in (a) is the 95% confidence interval 132 
for the Institute for Health Metrics and Evaluation U.S. cumulative fatality projection with 133 
preferred value (black line). Model parameters and results for (a) to (d) are presented in the 134 
Supplementary Information accompanying this paper. Representative seasonal hazard curves 135 
for each country as shown. TCs = tropical cyclones. See text for interpretations. These 136 
hazard curves are derived from a variety of sources (Brooks et al., 2003; Landsea, 1993; 137 
Nissan et al., 2017; Sheridan and Kalkstein, 2010) and expert knowledge. 138 
 139 
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 140 
2. Context: Cascading natural disasters and their relevance to COVID-19 scenarios 141 

 142 

Droughts, floods (meteorological) and earthquakes (geophysical) are the most common 143 

natural disasters in the world, affecting millions of people every year (Kouadio et al., 2012). 144 

Natural disaster fatalities since 1900 reveal decreases in average annual deaths from major 145 

drought and flood events and increases in fatalities associated with earthquakes (including 146 

tsunamis) and extreme weather (e.g., tornadoes, tropical cyclones) and temperature events 147 

(e.g., heat waves) (Figure 2). Fatality counts from extreme temperature events are considered 148 

a minimum estimate because heat and cold temperature extremes may exacerbate pre-existing 149 

medical conditions and contribute to mortality rates without formal attribution (Medina-150 

Ramon et al., 2006). 151 

 152 
 153 

Figure 2. Average annual deaths by natural disasters (Ritchie and Roser, 2020).  154 
 155 
A concurrent hazard is defined herein as hazardous event(s) of natural (e.g., earthquake, 156 

volcanic eruption, flood, tropical cyclone) or human origin (e.g., an infectious disease such as 157 

COVID-19) that overlaps in time and space. The occurrence of two or more hazardous events 158 

(e.g., an earthquake during COVID-19) is referred to here as a multi-hazard scenario (these 159 

are sometimes called “compound events”, but this term has a broader definition than used 160 
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here (e.g. Zscheischler et al., 2018)). Hazards that may be influenced by preceding hazards 161 

are referred to as cascading hazards. For context, we provide brief examples below. 162 

 163 

On January 12, 2010, a catastrophic 7.0 magnitude earthquake struck Haiti, causing more 164 

than 200,000 fatalities, displacing more than 1.5 million people and affecting 3 million 165 

people overall (Doocy et al., 2013, see also Fig. 2). The earthquake severely damaged the 166 

public sanitation system and created ideal conditions for outbreaks of major infectious 167 

diseases. Nine months later, a cholera outbreak originating from human transmission (Orata 168 

et al., 2014) began to spread across the country, eventuating in more than 9,000 deaths and 169 

650,000 infections (https://www.cdc.gov/cholera/haiti/index.html). Prior to 2010, there was 170 

no reported history of cholera in Haiti. Long-term impacts and hazards originating from the 171 

earthquake crisis (socioeconomic impacts, infrastructure impacts, hazards such as 172 

aftershocks) spatially and temporally overlapped, interacted with, and amplified the cholera 173 

impacts; these could be considered as a protracted multi-hazard scenario with cascading 174 

elements.  175 

 176 

In addition to these, other examples of cascading, multi-hazard scenarios include:  177 

(i) increased long-term flood hazard in Christchurch, New Zealand caused by, and concurrent 178 

with, the 2010-2011 Canterbury earthquake sequence (Quigley and Duffy, 2020);  179 

(ii) large death tolls in Puerto Rico and some Caribbean islands due to the cascading effects 180 

of Hurricanes Irma and Maria, which compounded societal vulnerability through 181 

infrastructure damage and power outages that left millions without electricity, water, and cell 182 

phone service for 2-4 weeks;  183 

(iii) the 2015 magnitude 7.8 Nepal earthquake along with its magnitude 7.3 aftershock 184 

triggered snow avalanches (largest ~2.3 km2) and thousands of landslides, with some of the 185 

latter causing flooding due to river blockages and landslide dam breaches (Martha et al., 186 

(2017). Blocked and damaged road infrastructure directly impacted earthquake response 187 

efforts, including search and rescue activities, the timely provision of emergency aid, the 188 

ability to conduct rapid needs assessments, and the provision of essential services (Khazai et 189 

al., 2015). The complex spatial distribution of landslides highlights the need for considering 190 

additional dimensions including seasonality in a multi-hazard scenario (Roback et al., 2018);  191 

(iv) Notable extreme events (e.g. floods of 1987, 1998, and 2007, tropical cyclone in 1991) in 192 

Bangladesh offer a perspective of the interaction between extreme natural hazards and  193 

socioeconomic vulnerabilities, and how that could be amplified by COVID-19 (Siddique et 194 
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al., 1991; Khalil, 1993; Mushtaque et al., 1993; Dove and Khan, 1995; Chowdhury, 2000; 195 

Benson and Clay, 2002; Mirza, 2002; Sherman and Shapiro, 2005; McMahon, 2007; 196 

Zoraster, 2010; Rahman et al., 2013).   197 

(v) The 2011 Tohoku magnitude 9.1 earthquake not only triggered a tsunami but also a major 198 

malfunction at the Fukushima Daiichi Nuclear Power Plant, exposing scores of people to 199 

radiation hazards globally (Ten Hoeve and Jacobson, 2012).  200 

 201 

Furthermore, it is also important to understand post-disaster epidemic development. For 202 

instance, previous cases of Acute Respiratory Infections (ARIs) following natural disasters 203 

can shed light on disaster response needed to counter the spread of COVID-19. It has been 204 

documented in detail that ARIs were a major concern following natural disasters such as the 205 

South Asian Tsunami (World Health Organization, 2005; Doocy et al., 2007;), major-to-great 206 

earthquakes (Weekly Morbidity and Mortality Report Pakistan, Vol. 42/ DEWS 2006 -36; 207 

Woersching et al., 2004; Akbari et al., 2004), volcanic eruptions (Surmieda et al., 1992), and 208 

Hurricanes (Campanella, 1999). In addition to ARIs, there is a clear record of outbreaks of 209 

other communicable diseases (e.g. water borne diseases) in communities affected by natural 210 

disasters, the majority of which are attributed to crowding of displaced people in camps, and 211 

thus, provides policy implications (Weekly Morbidity and Mortality Report Pakistan, Vol. 212 

23/ DEWS 2006-17; Marin et al., 2006; Watson et al., 2007; Kouadio et al., 2012). 213 

 214 

 Several natural disasters have now occurred during the COVID-19 crisis. We consider some 215 

of these in sections 3 and 4. Many countries around the world, including those with 216 

increasing COVID-19 infection and fatality rates are highly susceptible to seasonal natural 217 

disasters. Policymakers in these countries are currently considering reducing COVID-19 218 

social distancing and other mitigation restrictions to stimulate their economies and enable 219 

citizens to return to work; the potential for forthcoming natural disasters is scarcely 220 

mentioned in these narratives. 221 

 222 
 223 

3. Plausible COVID-19 epidemic scenarios, multi-hazard curves, and the 224 
importance of expeditiously reducing infection rates prior to disaster seasons 225 

  226 
Figure 1 presents epidemiological forecast models for COVID-19 fatalities and infections for 227 

the USA, Australia, Bangladesh and China, developed using https://covid19-scenarios.org/ 228 
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Software. Curves were generated by iteratively bootstrapping the COVID reproduction 229 

number (Ro), simulation onset date, and % mitigation variable to maximize goodness-of-fit 230 

between confirmed cumulative fatalities and modelled deaths through the same time period. 231 

Several alternative scenarios were considered by adjusting the % mitigation variable only. 232 

  233 

The average Ro ranges from 1.9 (Australia) to 3.9 (China); Bangladesh is 3.8 and the United 234 

States is 3.2. These estimates are consistent with the range of reported Ro values from 235 

scientific literature (https://www.nature.com/articles/d41586-020-01003-6); noting that the Ro 236 

values used here are intended to be an average value since COVID-19 onset (rather than a 237 

constantly changing value) that are modified by adjusting the % mitigation parameter at 238 

various time-slices. Mitigation dates for each country were derived from internet media 239 

reports by searching “country name”, and “COVID-19 mitigation actions” in Google and 240 

Google news search engines. The mitigation % effectiveness parameter was estimated from 241 

our analysis of the mitigation protocols taken, as represented by the media consulted for 242 

mitigation dates. A preference was given to peer-reviewed literature and / or government-243 

issued information sources. For example, in Australia, we assigned a mitigation estimate of 244 

75% (range 50% to 90% effectiveness) commencing on 23 March 2020, when many places 245 

of social gathering were closed and a variety of mitigation strategies aimed to reduce social 246 

contact were progressively enacted, based on a government source summary document 247 

(https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-248 

alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/limits-on-public-249 

gatherings-for-coronavirus-covid-19). Some countries have highly incremented and highly 250 

regionalized mitigation processes 251 

(https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e2.htm?s_cid=mm6915e2_x) for which 252 

a single Ro metric grossly simplifies the reality (for example the U.S., where 20 March, 2 253 

April, 12 April); in these cases we acknowledge this complexity but consider our estimates to 254 

best represent available information at the time of writing. Ro values, mitigation dates and % 255 

effectiveness estimates, and projected fatalities are included in the Supplementary 256 

Information item 2 accompanying this manuscript. 257 

  258 

Infection and cumulative fatality scenarios vary widely and are highly sensitive to small 259 

changes in % mitigation scenarios (e.g., Fig. 1d, CHN_3.9_85_67 vs CHN_3.9_85_67), 260 
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particularly for countries with higher Ro values. Both estimates are intended for the main 261 

purpose of demonstrating how reducing mitigation measures can dramatically influence these 262 

projections.  263 

In the case of the U.S., where a lifting of restrictions and re-opening of businesses is being 264 

considered, reduction in mitigation measures is likely to sustain higher infection and fatality 265 

rates (see USA_3.2_30_70_80 curve) concurrent with peak tornado hazard season in the 266 

southeast and central U.S. (blue curve), overlapping with increasing (and peak) wildfire and 267 

heatwave hazards, and potentially overlapping with increasing flood, hurricane, and tropical 268 

cyclone hazards. Other COVID-19 related restrictions are likely to compound natural disaster 269 

and COVID-19 risks. For example, the U.S. Forest Service has cancelled its planned seasonal 270 

burns due to COVID-19 restrictions, and travel restrictions may reduce the likelihood of 271 

provision of international support for firefighting. This is explored in more detail in the 272 

Discussion section. 273 

In the case of Australia, where strong and increasing social distancing measures were enacted 274 

nationally beginning on 23 March, daily confirmed infections are reducing significantly, and 275 

the cumulative fatality curve has mostly plateaued (as of 16 April 2020). Infection and 276 

fatality rates began to increase in Australia after the cessation of the severe 2019-2020 277 

bushfire season (“Black Summer Fires”) in which thousands of Australians were forced to 278 

evacuate into communal environments; had COVID-19 emerged only 1-2 months earlier in 279 

Australia community transmission risks would have been significantly higher. All of the 280 

major seasonal hazards are reducing or at low levels; it seems less likely that natural multi-281 

hazard scenarios will concur with COVID-19, although the protracted nature of the latter and 282 

possibility of stochastic hazards (e.g., earthquakes and out-of-peak season floods) means this 283 

is still possible. 284 

 285 

In the case of Bangladesh, infection and cumulative fatality rates are currently steeply 286 

increasing. Some mitigation measures have been in effect, however the effectiveness of these 287 

is currently unclear. Cumulative fatality projections vary widely; our results suggest sustained 288 

70% average effectiveness (in the absence of other concurrent disasters or major changes in 289 

internal variables) could keep fatalities below 10,000, but weaker mitigation strategies 290 

forecast > 500,000 deaths. Regardless of the mitigation scenarios considered here, sharp 291 

increases in infections and deaths are predicted to overlap with the forthcoming tropical 292 
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cyclone and heatwave peak hazard seasons and may overlap with peaks in monsoonal flood 293 

hazard. These aspects are further considered in section 6. 294 

 295 

In the case of China, renewed ‘secondary spikes’ in infections in late March and early April 296 

enhance uncertainty in epidemiologic projections. If the average post-peak infection and 297 

fatality rate reductions have plateaued, our model suggests ~4500 deaths (CHN_3.9_85). 298 

However, if mitigative restrictions are relaxed, and if infection resurgences are sustained and 299 

stimulate cascading infections, it is conceivable (albeit unlikely) that cumulative fatalities 300 

could exceed 70,000 or more (e.g., CHN_3.9_85_67). In the latter scenario, infection and 301 

fatality rates could increase concurrently with increasing flood, heatwave, and hurricane + 302 

tropical cyclone hazards, which cause more than 1000 fatalities per year in China on average 303 

(Han et al., 2016). China also contains regions with high earthquake hazard. To reduce risks 304 

of concurrent and cascading multi-hazards, our analysis indicates that strong and sustained 305 

mitigation to reduce COVID-19 infection rates are required. 306 

  307 

The COVID-19 pandemic is active and continuously evolving. The time interval over which 308 

our forecast models are valid is shorter than the expected duration of this crisis. For example, 309 

capturing rapid movement of hot spots through China, Italy, Spain, and the United States due 310 

to continuously evolving population dynamics and government measures adds an additional 311 

layer of complexity, reducing the predictive power of forecasts over longer time periods. In 312 

the absence of a vaccine, it is conceivable that the COVID-19 pandemic might last for 313 

multiple months or years and its resurgence may occur in waves as in any other previous 314 

major pandemic (e.g. Cohn, 2008). Adapting resurgence histories of previous COVID-19 like 315 

pandemics (e.g., human corona virus HCoV-OC43) for modelling transmission dynamics, 316 

Kissler et al. (2020) suggest that the current pandemic or its waves may last through 2024. 317 

This effectively translates into an increase in compound risks associated with COVID-19 318 

pandemic, and therefore, while our preliminary analysis of concurrent compound hazards is 319 

useful for the time interval considered, it does not preclude the possibility for future multi-320 

hazard scenarios concurrent with COVID-19 to occur beyond the temporal extent of our 321 

analysis.    322 

 323 
4. Multi-hazards concurrent with COVID-19 324 

 325 
4.1 Croatia Mw 5.3 earthquake 326 
 327 
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On 19 March 2020 at midnight, the Croatian government introduced strict measures to 328 

counter the spread of COVID-19 virus as the number of confirmed cases rose to 105 (Dong et 329 

al., 2020). These included, for example, closing of borders, shutting down all non-essential 330 

activities such as public events and gatherings and service facilities, and requiring employers 331 

to facilitate working-from-home arrangements (http://balkans.aljazeera.net/vijesti/u-332 

hrvatskoj-na-snagu-stupile-stroge-mjere-zabranjen-prelazak-granica). These strict measures 333 

were enforced to promote social-distancing – the globally accepted modus operandi against 334 

the spread of the virus.  335 

 336 

Temporarily disrupting this countrywide partial lockdown, a moment magnitude (Mw) 5.3 337 

earthquake occurred in the northern suburbs of Zagreb, the capital of Croatia with a 338 

population of over 800,000. Prior to this earthquake, Zagreb has been devastated by several 339 

moderate earthquakes, the latest of which occurred in 1880 with a magnitude of 6.3 (Kozák 340 

and Čermák, 2010) that caused damage to about 500 buildings within a ~25 km radius from 341 

the epicenter. Past experiences have shaped earthquake preparedness in Zagreb and 342 

approximately 80% of buildings are built to standards consistent with the earthquake building 343 

design codes. However, the Mw 5.3 event and its aftershocks in March 2020 caused 344 

significant damage and disruption in the city. There was one fatality and at least 27 people 345 

suffered injuries. Electricity, water, and heating were lost in some parts of the city and about 346 

250 houses sustained significant damage. An estimated 59 people required temporary shelters 347 

due to loss of dwellings (https://abcnews.go.com/Health/wireStory/aftershocks-rattle-348 

croatian-capital-day-strong-quake-69744525). 349 

 350 

The Croatian earthquake is not an extreme hazard scenario. However, it provides a useful 351 

perspective of compound risks. For example, in the immediate aftermath of a natural disaster, 352 

measures imposed to ensure social-distancing may collapse temporarily. Due to the moderate 353 

size of the event and relatively localized damage zone, the Croatian government managed to 354 

clamp down on partial lockdown measures within about a day by issuing new directives, 355 

whereby the natural human behaviour of congregating in numbers and comforting each other 356 

in the aftermath of such an event was disrupted. Nonetheless, it is evident that the risk of 357 

COVID-19 transmission increased in a short-time window immediately following the Zagreb 358 

earthquake.  359 

      360 
 361 
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 362 
Figure 3. Daily new infectee rate in Croatia. The time of the Mw 5.3 Zagreb earthquake is 363 
also shown along with the COVID-19 incubation time range defined by WHO. An apparent 364 
increase in the infectee rate proceeding the earthquake is discernible. Data source: Dong et 365 
al. (2020)  366 
 367 
The daily new infectee rate (Fig. 3) shows an apparent increase following the Zagreb 368 

earthquake on 22 March 2020 within the COVID-19 incubation time range. Further analysis 369 

is needed to ascertain the exact cause of this apparent signal although it is not unreasonable to 370 

presume that the temporary collapse of social-distancing measures not only in Zagreb but 371 

also in other parts of the country in the immediate aftermath of the earthquake might have 372 

played a role. Therefore, the importance of acting rapidly and decisively by governing bodies 373 

in the immediate aftermath of a natural disaster is highlighted by the Zagreb earthquake. 374 

Identifying probable natural disasters and advance preparation might enable enforcing such 375 

actions more efficiently and systematically, reducing risks posed by the COVID-19 virus.  376 

 377 
4.2 Tropical Cyclone Harold (TCH) 378 

 379 
TCH – a severe meteorologic event in the Pacific – made landfall in Solomon Islands, 380 

Vanuatu, Fiji, and Tonga between 1 April 2020 and 8 April 2020 381 

(https://public.wmo.int/en/media/news/tropical-cyclone-harold-challenges-disaster-and-382 

public-health-management), disrupting COVID-19 early intervention made by these 383 

communities. It first made landfall in Solomon Islands as a Category 2 event and rapidly 384 

transitioned into a Category 5 event by the time it reached Vanuatu, sustaining high winds of 385 
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200 km/h. Moving further southeast, it made landfall in Fiji and Tonga as a Category 4 386 

tropical cyclone. 387 

 388 

Initial assessments indicate that 59,000 people were affected in Solomon Islands and 27 389 

people are missing at sea to date. In Vanuatu, the northern province Sanma sustained severe 390 

damage, where 90% of the population lost their homes and about 50% schools and 25% 391 

health centers were damaged. Initial aerial investigations conducted by the National Disaster 392 

Management Office of Vanuatu indicate that 159,474 people have been affected with 393 

possible 3 deaths (https://ndmo.gov.vu/tropical-cyclone-harold). The damage to houses, 394 

evacuation centers, gardens, water systems, health facilities, and schools vary between 50% 395 

and 90% across seven different provinces (https://ndmo.gov.vu/tropical-cyclone-396 

harold/category/100-01-ndmo-situation-reports#). In Fiji, more than 1,500 people have been 397 

moved to evacuation centers. The coastal flooding early warning system recently installed 398 

under the Coastal Inundation Forecasting Demonstration Project in Fiji recorded storm surge 399 

heights between 6.5 m and 8.5 m during the passage of TCH, which suggests that damage to 400 

life and property might be higher than known at present. Damage in Tonga is less 401 

documented but expected to be widespread with damage to homes, water supply, and food 402 

crops. TCH provides an example of how disaster response and recovery may impact COVID-403 

19 measures. For example, Vanuatu has reduced in-country travel restrictions to facilitate 404 

humanitarian and relief operations. However, reduced capacity of communication services, 405 

disruptions infrastructure lifelines and supply chains, and limited resources are likely to 406 

compromise relief efforts and may increase societal vulnerability to COVID-19. Fortunately, 407 

these islands have recorded a very low number of COVID-19 confirmed cases to date, and it 408 

is yet to be seen if TCH has perturbed this trend.  409 

 410 

4.3 Eruption of Anak Krakatau in Indonesia  411 

 412 

The Anak Krakatoa garnered much attention after its southwestern flank collapsed in an 413 

eruption in December 2018 and generated a tsunami that killed 437 and injured thousands 414 

along western Java and Southern Sumatra (Ye et al., 2020). The volcano started a new 415 

eruption cycle on 10 April 2020 concurrent with the COVID-19 pandemic. This has remained 416 

an active situation to date with constant alerts being disseminated to the public 417 

(https://magma.esdm.go.id/v1/vona?page=1#) with a Volcano Observatory Notice for 418 

Aviation (VONA) alert level assigned as orange (3/4): “Volcano is exhibiting heightened 419 



14 
 

unrest with increased likelihood of eruption with column height below 6000 meter above sea 420 

level”. To our knowledge, no damage has been reported from this latest eruption cycle. A 421 

flank collapse analogous with the December 2018 is very unlikely as the volcano has greatly 422 

reduced in aerial extent as a result of that event. However, this highlights in general the high 423 

volcanic hazard throughout Indonesia, and the risk of volcanic activity to cause fatalities and 424 

population displacements that could impact on current COVID-19 mitigation strategies. 425 

Indonesia is still in early stage of the pandemic with only 4,839 confirmed cases and 459 426 

deaths, however the mortality rate of 9.5% is higher than global average of 6.4% on 14 April 427 

2020.   428 

 429 

4.4 Tornadoes in the southeastern US  430 

 431 

On 12 and 13 April, cold fronts crossed the southeast of the United States bringing 432 

widespread rainfall and embedded mesoscale convective systems (MCSs) with associated 433 

strong winds and tornadoes. The MCSs within the larger weather system crossed several 434 

states, but Mississippi, Georgia and South Carolina were the worst impacted. The severe 435 

weather killed at least 30 people (https://www.nytimes.com/2020/04/13/us/tornado-storm-436 

south.html) across four states and destroyed many more peoples’ homes. 437 

 438 

The typical immediate emergency response during a tornado outbreak is centred around 439 

finding shelter and this is practised by the community in the central and southeast US which 440 

has been well drilled in this process through past experience of severe weather. There is 441 

obvious potential for social distancing to be compromised where large tornado shelters are 442 

used, but accurate weather forecasts allowed for planning so that individual families within 443 

shelters were instructed to stand apart. Concerns about managing disaster response during the 444 

COVID-19 pandemic prompted the American Meteorological Society to draw up a list of 445 

guidelines for sheltering from tornadoes during the COVID-19 pandemic 446 

(https://www.ametsoc.org/index.cfm/ams/about-ams/ams-statements/statements-of-the-ams-447 

in-force/tornado-sheltering-guidelines-during-the-covid-19-pandemic/). Much of the advice is 448 

consistent with standard procedures for severe weather, but additionally people should be 449 

sure ahead of time that specific tornado shelters are open. 450 

 451 
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The US was in the midst of a steep rise in COVID-19 cases and fatalities at the time of this 452 

tornado outbreak. It is presently unclear whether this severe weather has compounded the 453 

effects of the COVID-19 pandemic in the southeast US. 454 

 455 

 456 

5. A simple epidemic phenomenological model with a concurrent event 457 

 458 

5.1 Method 459 

 460 

To qualitatively understand the effect of an external perturbation such as a natural hazard on 461 

the daily COVID-19 infectee rate, we created a simple epidemic model assuming that the 462 

cumulative growth of infectees over time follows a logistic differential function (eq. (1)). For 463 

a holistic analysis, this simple model is appropriate as the distribution of confirmed 464 

cumulative COVID-19 cases in countries that have implemented strict counter measures (e.g. 465 

China, South Korea, and Australia) can be approximately explained by this model. The 466 

exponential growth of COVID-19 cases observed in other countries is an indication of early 467 

stage exposure to the disease and that patient distribution is not sustainable over a longer time 468 

horizon due to the finiteness of populations and counter measures taken by governments. 469 

Therefore, the cumulative distribution of COVID-19 cases can be expected to converge to a 470 

model similar to that described by some variation of eq. (1).  471 

 472 

 473 
 474 
Where N is the cumulative number of infectees at any given time, t is time, Nmax is the 475 

expected maximum number of infectees, and g is the fractional growth of cumulative 476 

infectees. Figure 4 compares data from China and the model based on eq. (1) with g = 0.3, 477 

Nmax = 83,213 and a time horizon of 83 days, where an approximate value for g is selected 478 

based on visual inspection of the fit between data and the model. Note that the first patient in 479 

China was potentially discovered on 10 December 2019 and data for the period from that day 480 

to 22 January 2020 (start date given in the figure) is not reliably recorded 481 

(https://www.wsj.com/articles/how-it-all-started-chinas-early-coronavirus-missteps-482 

11583508932). 483 

 484 
 485 

𝑑𝑁𝑑𝑡 = 𝑔 ቆ1 − 𝑁𝑁𝑚𝑎𝑥ቇ 𝑁 (𝑒𝑞. 1) 
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 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
Figure 4. Illustrations of cumulative infectees and daily new infectee rates. Upper panel: 504 
Reported confirmed COVID-19 cases in China from 22 January 2020 (blue curve) and the 505 
model based on eq. (1) (red-dashed line). See main text for parameters used. Bottom panel: 506 
An example model output (see main text for details) showing the daily new infectee rate over 507 
time for larger (blue) and smaller (red) spreading rates. While the infected population size 508 
(Nmax = 10,000) remains the same, a reduction in spreading rate from g = 0.2 to g = 0.1 509 
“flattens the curve” over a time horizon of 150 days. 510 
 511 
Rather than analysing cumulative infectee numbers, we focus on the effect on the “flattened” 512 

daily new infectee rate following an external perturbation (e.g. a natural disaster) as it is the 513 

behaviour of this curve that is being used to design COVID-19 counter measures (“curve 514 

flattening” shown in Fig. 4 bottom panel). We make several assumptions to construct our 515 

simple models: 516 

 517 

(1) In the immediate aftermath of an extreme natural disaster, it is reasonable to assume that 518 

all measures taken to contain the spread of COVID-19 collapse in the area directly affected 519 

by the event and the control over spreading rate is lost, resulting a spike in infectees. In this 520 

case, we assume that the spreading rate increases to the background value that existed prior to 521 

imposing “curve flattening” measures. 522 

 523 

(2) Governments re-establish social-distancing measures fully over a finite time horizon 524 

(Pdays) following the external perturbation, which means that the flattened spreading rate that 525 

existed prior to the external perturbation will take effect beyond Pdays. In the interim period 526 

(i.e. within Pdays), it is highly likely that governments will take partial measures that will 527 
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reduce the spreading rate as was seen during the earthquake in Croatia. Also, compliance of 528 

citizens to these partial measures can be expected although it may depend on the severity of 529 

the event and the socio-political profiles of countries. Thus, we model this effect by linearly 530 

reducing the spreading rate from the background value to the flattened value in the interim 531 

period. We test several reasonable time horizons to understand their effect on the flattened 532 

daily new infectee rate curve. Depending on the nature of the external perturbation, different 533 

scenarios may play out. For instance, in the event of a flood, a population may get displaced 534 

and scattered from days to months (Sastry, 2009) or it may be that populations get displaced 535 

but not scattered as in the case of an earthquake (Akbari et al., 2004; Asokan and Vanitha, 536 

2017). These different scenarios will have an effect on the spreading rate. Describing the 537 

spreading rate quantitatively for different scenarios is not the focus of our modelling. Instead, 538 

we model the general behaviour of the “flattened curve” in the event of an external 539 

perturbation subjected to above (1). 540 

 541 

(3) The COVID-19 incubation time period (the time between exposure to the virus and 542 

emergence of symptoms) is five days, consistent with the median incubation time published 543 

by WHO (https://www.who.int/news-room/q-a-detail/q-a-coronaviruses). This means that no 544 

new cases will be found within the first five days following an event. This simplifies the 545 

“ground truth” somewhat, as according to WHO, incubation time range varies between one 546 

and fourteen days. 547 

 548 

In our models, we set Nmax = 10,000, a background spreading rate (gb) of 0.2, a flattened 549 

spreading rate (gf) of 0.1, and a time horizon of 150 days. We test the perturbation to the 550 

flattened curve with Pdays= 1, 7, 14, 21, and 28 days.  551 

 552 

 553 

5.2 Results 554 

 555 

Figure 5 shows the results of modelling the flattened daily new infectee rate after introducing 556 

a concurrent event with Pdays = 1, 7, 14, 21, and 28 days. For each Pdays, we tested two 557 

scenarios, where we introduce external perturbations at 72 and 112 days from the start date of 558 

the flatten curve. These two time points are located symmetrically on either side of the peak 559 

of the flattened curve (day 92), and thus, provide qualitative insights into demands on the 560 

health services depending on the event occurrence relative to the peak. 561 
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 562 

Our results provide two main insights: (1) A concurrent event occurring prior to reaching the 563 

peak of the flattened curve increases the new infectee rate more in the aftermath of a 564 

concurrent event than if it were to occur at a post-peak time. This translates into increased 565 

demand on health services in the pre-peak period than in the post-peak period. (2) The 566 

number of days a government takes to re-establish COVID-19 spreading control measures 567 

(Pdays) is a critical factor that determines the level of demand placed on health services. That 568 

is, the longer it takes for a government to re-establish control measures, the higher the 569 

demand on the health services particularly in the pre-peak period.  570 

 571 

These results based on our simple model emphasize two main policy decisions governments 572 

have to make. First, measures must be enforced as early as possible to flatten the daily new 573 

infectee rate curve, so that the peak can be reached within a reasonable amount of time. This 574 

would decrease the risk of a natural disaster occurring in the pre-peak period, reducing an 575 

unexpected demand on health services. Secondly, contingency plans must be devised with a 576 

focus on re-establishing COVID-19 counter measures as fast as possible in the wake of an 577 

event. This would involve identifying possible natural disasters, their magnitude, timing (for 578 

example seasonal events), and regional dependencies. 579 

 580 

Following our example, more sophisticated models can be built to incorporate infectious 581 

disease dynamics in the wake of a concurrent event. For example, we have only considered 582 

the infected component in this instance, whereas a standard epidemiological compartmental 583 

model will incorporate susceptible and recovered components in addition to the infected 584 

component (Kermack and McKendrick, 1927) enabling the mapping of dynamic interactions 585 

between different population groups. Prediction capabilities can be further improved with 586 

even more complex models, where the underlying assumption of a well-mixed population is 587 

relaxed, and structured populations are used to reflect variable dynamics among different 588 

groups of population (e.g. Inaba and Nishiura, 2008). For real time applications, however, 589 

more work will be needed to reduce uncertainties in parameters that capture the 590 

spatiotemporal characteristics of spreading of a disease (e.g., R0, Ridenhour et al., 2014)       591 
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 592 
Figure 5. The daily new infectee rate with a concurrent event (e.g. a natural disaster). Red 593 
and blue curves are same as those given in Fig. 4 and the grey dash-dot curve is the flattened 594 
curve perturbed by a concurrent event. The vertical dashed black line is the event day. The 595 
left panel shows the effect on the flattened curve for an event occurrence in the pre-peak 596 
period, whereas the right panel is for an event occurrence in the post-peak period. Each row 597 
represents a given Pday, the number of days a government takes to fully re-establish COVID-598 
19 counter measures following the concurrent event. Pre-peak events increase the daily new 599 
infectee rate more than post-peak events. Also, the longer the governments take to re-600 
establish strict COVID-19 counter measures, the higher the daily new infectee rate. 601 
 602 
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 603 
6. Discussion 604 
 605 
6.1 Relative risks: qualitative probabilities of concurrent multi-hazard cascades during the 606 

COVID-19 crisis 607 

 608 

The combined epidemiological forecasts for COVID-19 and seasonal hazard risk plots in 609 

Figure 1 illustrate the different extreme weather types that countries will likely need to 610 

manage during different stages of the pandemic. While we have not modelled stochastic 611 

hazards such as earthquakes, they contribute a non-negligible to high hazard with regional 612 

variability for all the countries considered.  613 

 614 

(a) Australia: 615 

In Australia, summer 2019/20 saw substantial natural hazards including major heatwaves that 616 

brought record high temperatures to populated areas including Canberra and western Sydney, 617 

severe bushfires that swept through an unprecedented area of the continent (Boer et al. 2020) 618 

and continuing drought that has devastated farming areas, diminished water supplies and 619 

primed the Australian forests for bushfire (King et al. 2020). Australia’s “Black Summer” 620 

also saw millions of people experience very poor air quality for several days at a time as 621 

smoke from the fires blanketed Sydney, Canberra and Melbourne on several occasions. The 622 

bushfires, which resulted in 33 fatalities, led to mass evacuations from vulnerable areas and 623 

people sheltering on crowded beaches in Mallacoota, Victoria amongst other places. 624 

 625 

The “Black Summer” came only months before the COVID-19 pandemic began and as 626 

Australia approaches winter the risks of severe weather related to heatwaves, bushfires, 627 

tropical cyclones and hailstorms is reduced. While there are still natural hazard risks in 628 

Australian winter, notably related to floods and extratropical cyclones, the overall rate of 629 

meteorological hazards is lower than in summer. In that sense Australia is fortunate to have 630 

not experienced major natural hazards coincident with the COVID-9 pandemic, and it is less 631 

likely to do so than Northern Hemisphere countries over the coming months. Note, that there 632 

are non-natural hazards that could also occur during winter that could exacerbate the effects 633 

of COVID-19 in Australia such as seasonal flu. 634 

 635 

(b) The United States: 636 
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In the US, we have already highlighted the tornado outbreak of 12 and 13 April as occurring 637 

during the COVID-19 pandemic. The US experiences its seasonal peak in tornado probability 638 

in May, so there are likely to be further severe storms around this time. During boreal 639 

summer, the US often experiences other natural hazards including heatwaves and hurricanes. 640 

While these extremes both have devastating impacts their interaction with the ongoing 641 

COVID-19 pandemic will likely differ. Heatwaves tend to exacerbate pre-existing health 642 

conditions. This would place an additional burden on a healthcare system that may also be 643 

stretched due to COVID-19. In contrast, hurricanes tend to damage infrastructure, and, like 644 

tornadoes, people evacuate and shelter, often travelling interstate or sheltering with many 645 

other people in large buildings. Such a response to a hurricane in summer 2020 would not 646 

abide by social distancing protocols and could aid the spread of the virus. Alternate plans 647 

should be considered. Both heatwaves and hurricanes affect larger areas than tornadoes and 648 

have the potential to strain emergency response systems already managing the COVID-19 649 

pandemic.  650 

 651 

 652 

(c) South Asia: 653 

South Asian countries with some of the highest population densities 654 

(https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SEDAC_POP) are exposed to compound 655 

risks from COVID-19 pandemic and extreme weather events such as severe floods as the 656 

region enters the wet season from May to October. For instance, 1110 people died and nearly 657 

14 million were affected in the floods of June 2007 in Bangladesh (Dewan, 2015). In 658 

addition, Northern Pakistan and India, Nepal, and Bhutan are located along the Himalayan 659 

main frontal thrust capable of producing large Mw > 7.0 earthquakes (Lavé et al., 2005). The 660 

devastation caused by the 2015 Mw 7.8 Gorkha earthquake that occurred in Nepal 661 

exemplifies the exposure of this region to extreme geologic hazards. This particular event 662 

killed 8,790 people, injured 22,304 and affected another 8 million people and damaged 663 

755,549 buildings (Gautam, 2017). It is evident from these statistics that solitary extreme 664 

natural hazards in this region have the potential to affect large numbers of people and 665 

displace them. In particular, displacement in large numbers during severe natural events is 666 

mainly attributable to the poor quality of dwellings and infrastructure. This in turn is 667 

detrimental to measures enforced to counter the spread of COVID-19, foremost of which is 668 

social distancing. In the event of natural hazards, these measures are highly likely to 669 

disintegrate completely, substantially increasing the risk of COVID-19 infections. 670 
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(d) Other: 671 

While we have qualitatively aggregated these hazards on an domestic scale, the countries 672 

considered herein (and many other countries with high natural disaster risk including Japan, 673 

The Philippines, Iran, and many central America and Pacific island nations) have strong 674 

regional variations in hazard, exposure, and vulnerability that are superimposed on 675 

spatiotemporal variabilities in COVID-19 risks. It is well beyond the scope of this article to 676 

consider these regional variations. However, we provide one example, from the U.S. state of 677 

Texas (Figure 6). Currently Texas has implemented two of four potential social distancing 678 

measures but has a climbing rate of COVID-19 hospitalizations and deaths that are 679 

collectively increasing demand on resources (Figure 6). Projected peaks in fatality rate and 680 

hospital demand overlap with the seasonal peak in tornado hazard (Long et al., 2018). Upper 681 

bounds (95% confidence) on projected ICU resource capacity currently approach ICU bed 682 

availability; if tornadoes increase ICU demand (by increasing critical care injuries associated 683 

with the tornado and / or COVID-19 infectees) or reduce capacity (by power outages and 684 

infrastructure damage) then it is conceivable that resource limits could be approached. 685 

 686 

 687 
Figure 6. COVID-19 daily deaths, hospital bed usage and capacity, and future projections 688 
plotted against the tornado seasonal hazard curve. The concurrency of increased COVID-19 689 
and tornado hazards define heightened risk of a multi-hazard scenario that could greatly 690 
increase demand on hospital resources and increase COVID-19 exposure risks in instances 691 
where existing tornado evacuation procedures such as communal clustering into shelters are 692 
undertaken.  693 
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6.2 Implications for humanitarian response 694 
 695 

In 2020 it is estimated that 167 million people across 55 countries will require humanitarian 696 

assistance (OCHA, 2019). With ongoing global economic uncertainty (IMF, 2020), it is 697 

unclear what impact the COVID-19 pandemic will have on humanitarian financing and 698 

resource mobilisation. In the event that a crisis exceeds the coping capacity of a host country, 699 

a funding or resourcing gap resulting from COVID-19 would severely impair the 700 

government’s ability to deliver critical humanitarian aid and to scale-up response efforts to 701 

meet the needs of the affected population.  702 

For many countries, a hazard response beyond the coping capacity of the government will 703 

trigger a Level 3 (L3) Inter-Agency Standing Committee (IASC) Humanitarian System-Wide 704 

Scale-Up (IASC, 2018) involving one or more clusters / sectors (i.e. Water Sanitation and 705 

Hygiene (WASH), Health, Protection, Logistics, Shelter) to coordinate response efforts. 706 

Responding to a L3 multi-hazard situation during COVID-19 will require additional 707 

resources and rely more heavily on integrated programming and inter-sectorial coordination 708 

incorporating competing priorities from different clusters / sectors.   709 

Where countries have an existing Humanitarian Response Plan (HRP), or contingency 710 

planning simulations have been carried out such as the 2019 “Bangladesh contingency plan 711 

for earthquake response in major urban centres” (HCTT, 2019), response plans will need to 712 

be revised, to account for the increased risk of disease transmission and additional limitations 713 

and access considerations imposed by COVID-19 during response and recovery operations. 714 

Where an IASC system-wide L3 emergency response is triggered, such as a major earthquake 715 

on a similar scale to the 2015 Gorkha Earthquake, global humanitarian response mechanisms 716 

may be limited in their ability to rapidly mobilise international surge capacity (including 717 

humanitarian staff and volunteers) and resources typically relied on for large-scale 718 

humanitarian response. International military deployments may also be limited due to an 719 

increasing focus on domestic priorities. As a result, response efforts will likely need to 720 

become much more localised, with a focus on improving remote coordination and support for 721 

local responders. Movement restrictions will make it increasingly difficult for remote and 722 

isolated populations to seek medical services and assistance (OCHA, 2020) and specialised 723 

services such as psychosocial support will increasingly need to be delivered through remote 724 

systems, as already observed during the recent Croatia Earthquake Response (IFRC, 2020). 725 

Multi-hazard risk profiles in these circumstances will need to include an array of often 726 
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compounding vulnerabilities, such as the risk to elderly populations and the elevated risk of 727 

sexual and gender-based violence. 728 

Logistics supply chains have already been severely compromised by COVID-19, with a 729 

disruption of critical supply chains due to border closures, import/export restrictions, and 730 

access restrictions (OCHA, 2020). This will influence the way humanitarian programming 731 

can be implemented. Stimulation of local markets (where they still exist) through cash and 732 

voucher assistance (CVA) programming, improved engagement with the private sector, and 733 

utilisation of local industry and resources and will likely play an increasing role in strategies 734 

for recovery.  735 

 736 

A multi-hazard situation in an already compounded and protracted or ‘complex’ emergency is 737 

of particular concern. These include densely populated camp-like situations with a high risk 738 

of natural hazard, such as the Bangladesh Rohingya Refugee Response. As of December 739 

2019, some 810,000 Rohingya refugees lived in 34 congested camps at high risk of flooding, 740 

landslides and seasonal cyclones, and relying on humanitarian aid to meet basic needs 741 

(OCHA, 2019). The added complication of COVID-19 containment measures into this 742 

already protracted crisis will put populations at significant risk of loss of life and will cause 743 

unprecedented complexity for humanitarian response efforts in the event of a natural hazard. 744 

Dense settlements, with a high population density will need to carefully consider social / 745 

physical distancing measures in humanitarian programming. This will limit the types of 746 

assistance (emergency centres, camps, emergency shelter, cash distributions, rental 747 

assistance, etc.) that can be delivered and the implementation modalities that can be used 748 

without increasing risk of transmission, and thereby compromising efforts to contain COVID-749 

19.  750 

It is essential that humanitarian response remains proportionate, appropriate and relevant to 751 

the emergency, while still being timely and effective (Sphere, 2020). Humanitarian response 752 

should avoid exposing populations to further harm, and it is critical that preparedness plans 753 

pre-emptively assess and evaluate the compounding risks posed by COVID-19 in multi-754 

hazard situations.  755 

 756 

 757 

 758 

 759 
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7. Conclusions and recommendations 760 

 761 

Our analysis suggests that without good planning there is a risk of compounding impacts of a 762 

natural hazard during the COVID-19 pandemic. This could include both the effects of the 763 

natural hazard being worse than they would otherwise be, and additional spread of COVID-764 

19. Here we make several recommendations we believe could alleviate some of the worst 765 

effects of natural hazards during the pandemic: 766 

 767 

1) Make extensive use of pandemic and natural disaster hybrid models  768 

The compounding effect of seasonal natural hazards (e.g. floods, cyclones) on the COVID-19 769 

pandemic is largely a foreseeable problem and plans developed ahead of time could prevent 770 

some of the worst potential impacts from occurring. These plans can be based on modelling 771 

similar to that shown in this paper and we would encourage emergency management agencies 772 

to consider use of these hybrid models to build response plans. COVID-19 epidemiological 773 

models may be highly sensitive to natural disasters, and thus inclusion of seasonal and / or 774 

stochastic events might better enable worst-case scenarios to be considered. This may be 775 

particularly important considering (a) the effect on infectee rate of the timing of a concurrent 776 

event relative to the peak of the infectee rate curve as demonstrated in this study (Fig. 5); (b) 777 

the uncertainty in intensity and duration with which COVID-19 counter measures must be 778 

implemented for them to be effective. 779 

 780 

2) Make extensive use of weather forecasting and seasonal prediction models 781 

Where possible, use of prediction models may help agencies ramp up emergency planning 782 

procedures days and weeks before meteorological extremes occur. For example, seasonal 783 

prediction allows advance planning for the possibility of specific weather extremes and this 784 

should be undertaken to prevent some of the worst impacts of such events. There is already 785 

an indication that the 2020 Atlantic hurricane season will be unusually active (e.g. 786 

https://engr.source.colostate.edu/csu-researchers-predicting-active-2020-atlantic-hurricane-787 

season/), so planning for major land-falling hurricanes in the US over heavily populated cities 788 

during the COVID-19 pandemic could be beneficial. In particular, developing alternate 789 

response plans and communicating these well in advance should prepare people for the most 790 

suitable actions to take that keep them safe from the hazard while also adhering to social 791 
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distancing, could help in preventing a major disaster. Even on the timescale of numerical 792 

weather prediction, the response to the 12-13 April tornado outbreak demonstrates that 793 

several days may be enough to prepare for well-forecast small-scale extreme weather events. 794 

 795 

3) Re-design policy responses to different natural hazards 796 

 797 

It is likely that hazard mitigation measures for worst case scenarios of expected natural 798 

disasters, seasonal or stochastic, are already in place for many countries and regions (e.g. 799 

Hurricanes in the US, Floods in Bangladesh, earthquakes in Nepal). However, these plans do 800 

not account for the existing COVID-19 crisis that requires social-distancing as the primary 801 

counter measure. Thus, incorporating effects of natural hazards in epidemiological models 802 

can guide modifications required in existing natural hazard mitigation plans. The compound 803 

risks associated with stochastic natural disasters (e.g. earthquake, volcanic eruptions) can 804 

potentially be mitigated by modifying existing hazard mitigation plans. Specific suggestions 805 

include establishing strategies for decongestion of densely populated spontaneous camps and 806 

settlements, introducing clear physical distancing protocols for distribution of essential 807 

assistance, increasing space allocations for vulnerable populations in shelters to reduce the 808 

risk of COVID-19 transmission, and the use of more emergency shelter locations with fewer 809 

people so that some semblance of social distancing may be achieved even in the aftermath of 810 

a hurricane or earthquake. Large-scale availability of personal protective equipment (PPE) to 811 

emergency responders would also help prevent the spread of infection. 812 

4) Support agencies working in developing regions to manage relief efforts 813 

Given the disproportionate impacts of many prior pandemic and natural hazards on the 814 

developing world, plans to equip developing countries and NGOs in preparing for and 815 

responding to natural hazards during the COVID-19 pandemic would help limit the impacts 816 

of such disasters. 817 

As our simple epidemiology models show, spikes in daily new infectee rates are a likely 818 

scenario in the wake of a natural disaster. The magnitude and duration of these spikes could 819 

in principle be controlled by policy decisions (described above). Thus, disaster planning 820 

strategies and resourcing, such as the introduction of remote coordination platforms, the 821 

localisation of response efforts and resources, availability of evacuation centres with capacity 822 

for social distancing, potential mobility of humanitarian actors, volunteers and medical staff 823 
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that could respond to natural disasters in COVID-affected regions, and the availability of 824 

personal protective equipment and medical equipment (e.g., respirators) must be designed in 825 

combination with above (ii). Countering challenging conditions associated with natural 826 

hazards (limited road access, lack of communication etc.) must be considered in upholding 827 

COVID-19 social-distancing measures. 828 

 829 

We give these recommendations in the hope that they may be used to prevent some of the 830 

worst-impact scenarios of coincident natural hazard occurrences with the ongoing COVID-19 831 

outbreak. 832 

 833 
 834 
 835 
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